Math, asked by cutelegend2, 10 months ago

the angles of triangles are 5x-10 degree,2x+40 degree and 3x-50 degree .the triangle is​

Answers

Answered by EuphoricEpitome
0

Answer:

(angle sum property) sum of all angles of triangle = 180°

(5x-10)+(2x+40)+(3x-50)=180°

5x-10+2x+40+3x-50= 180°

10x-20=180°

10x= 200

x= 20

therefore angles are ( by putting value of x).

5x-10= 5(20)-10= 100-10= 90°

2x+40= 2(20)+40= 40+40= 80°

3x-50= 3(20)-50= 60-50= 10°

check-

90°+80°+10°= 180°

180°=180°

l.h.s = r.h.s

hence proved.

therefore our calculation is correct.

please mark it as brainliest ❤️❤️ and follow me..

Answered by amitkumar44481
62

Concepts Required :

By Angle Sum property of triangle

  • Sum of all angle in a triangle be 180° .
  • i.e. angle A + angle B + angle C = 180°.

Solution :

Let's Sides of triangle be A, B ,C.

A/Q,

 \tt\:\:\:\dagger\:\:\:\angle A = 5x - 10.

 \tt\:\:\:\dagger  \:\:\:\angle B = 2x  +  40.

 \tt\:\:\:\dagger  \:\:\:\angle C = 3x - 50.

\rule{90}1

Now,

By Angle Sum property of Triangle.

 \tt \longmapsto  \angle  A    + \angle  B   + \angle    C =180 \degree

\tt\longmapsto  (5x - 10) + (2x + 40) + (3x - 50) = 180.

\tt \longmapsto  10x + 40 - 60 = 180.

\tt\longmapsto  10x - 20 = 180.

\tt\longmapsto  10x = 180 + 20.

\tt\longmapsto  10x = 200.

\tt \longmapsto  x = 20 \degree.

\rule{200}3

Now, We have the value of x.

Let find there all sides,

\tt\mapsto   \angle  A = 5x - 10

\tt \mapsto  \angle A=5 (20) - 10.

\tt \mapsto  \angle  A= 100 - 10.

\tt\mapsto  \angle  A  = 90.

\rule{90}1

And,

\tt \mapsto  \angle B = 2x + 40.

\tt \mapsto  \angle  B = 2(20) + 40.

\tt\mapsto  \angle  B = 40 + 40

\tt \mapsto  \angle B = 80.

\rule{90}1

And,

\tt\mapsto  \angle C = 3x - 50.

\tt\mapsto  \angle C= 3(20) - 50.

\tt \mapsto  \angle C= 60 - 50

\tt\mapsto  \angle  C = 10.

\rule{120}1

Note : Diagram provide in attachment.

Attachments:
Similar questions