Math, asked by mahwishkhanrollno18, 2 months ago

-The angles ofa quadrilateral are in
the realto of 2:3:5:8 rend the
measure of each angle
angle.​

Answers

Answered by Hellothere263
0

Step-by-step explanation:

ratio of angles is 2:5:5:8

by taking x as a common factor between them we can name the angles

angleA =2x°--(1)

angleB=5x°---(2)

angleC=5x°---(3)

angleD=8x°---(4)

we know the sum of angles of an quadrilateral is 360°

therefore ,

angleA+angleB+angleC+angleC=360°

  • 2x°+5x°+5x°+8x°=360°
  • 20x°=360°
  • x=360/20
  • x=18

substitute the value of x in eqn (1)(2)(3)and(4) we get

angleA=36°

angleB=90°

angleC=90°

angleD=144°

pls mark me as brainliest if useful

Answered by SachinGupta01
10

\underline{\underline{\sf{\maltese\:\:Given}}}

⟹ The angles of the quadrilateral are in the ratio of 2:3:5:8

\underline{\underline{\sf{\maltese\:\:To \:  find}}}

⟹ Measure of each angle = ?

\underline{\underline{\sf{\maltese\:\: Solution}}}

 \sf \bigstar  \:  \underline{ Let  \: us \:  assume \:  that},

 \implies \sf First  \: angle \:  be \:  2x

 \implies \sf Second \:  angle \:  be \:  3x

 \implies \sf Third  \: angle \:  be \:  5x

 \implies \sf Fourth  \: angle \:  be \:  8x

 \bf Now,

 \sf \dashrightarrow \underline{ \boxed{ \sf Sum  \: of \:  the \:  interior  \: angles  \: of \:  quadrilateral = 360 ^ \circ}}

 \bf So,

 \implies \sf   2x + 3x + 5x + 8x = 360^  \circ

 \implies \sf   18x = 360^  \circ

 \implies \sf   x =  \dfrac{360^  \circ}{18}

 \implies \sf   x =  20^  \circ

 \implies \sf   {Value  \: of  \: x  \: is \:  20^  \circ }

 \bf Now,

 \sf \bigstar  \:  \underline{ Angles  \: of \:  quadrilateral  \: are  :  }

 \sf \implies First  \: angle \: (2x) = 2 \times 20^  \circ = 40^  \circ

 \sf \implies Second  \: angle \: (3x) = 3 \times 20^  \circ = 60^  \circ

 \sf \implies Third  \: angle \: (5x) = 5\times 20^  \circ = 100^  \circ

 \sf \implies Fourth  \: angle \: (8x) = 8\times 20^  \circ = 160^  \circ

━━━━━━━━━━━━━━━━━━━━━━━━━━

\underline{\underline{\sf{\maltese\:\: Verification}}}

 \implies \sf   2x + 3x + 5x + 8x = 360^  \circ

 \sf \implies   2 \times 20^  \circ + 3 \times 20^  \circ + 5 \times 20^  \circ + 8 \times 20^  \circ = 360^  \circ

 \sf \implies   40^  \circ + 60^  \circ + 100^  \circ + 160^  \circ = 360^  \circ

 \sf \implies   360^  \circ = 360^  \circ

 \sf \implies   LHS = RHS

 \bf Hence\:verified \:!!

Similar questions