Physics, asked by samantkumarbastia, 1 year ago

the angular velocity of a particle changes from 69 to 71 rpm in 30 sec.its angular acceleration in rev/min us equal to​

Answers

Answered by Anonymous
239

\huge\underline{\underline{\bf \green{Question-}}}

The angular velocity of a particle changes from 69 to 71 rpm in 30 sec.its angular acceleration in rev/min us equal to

\huge\underline{\underline{\bf \green{Solution-}}}

\large\underline{\underline{\sf Given:}}

  • Angular velocity {\sf \omega_1=69\:rpm}
  • {\sf \omega_2=71\:rpm}
  • Time ( t ) = 30 s

\large\underline{\underline{\sf To\:Find:}}

  • Angular Acceleration (\alpha)

\omega_1 in rps

\implies{\sf \omega_1=69\:rpm }

\implies{\sf \omega_1=69×\dfrac{2π}{60} }

\implies{\bf \omega_1=2.3π\:rps }

\omega_2 in rps

\implies{\sf \omega_2=71\:rpm }

\implies{\sf \omega_2=71×\dfrac{2π}{60}}

\implies{\bf \omega_2=2.36π\:rps }

\large{\boxed{\bf \blue{\alpha=\dfrac{\triangle \omega}{\triangle t}} }}

\implies{\sf \dfrac{(2.36-2.3)π}{30}}

\implies{\sf \dfrac{0.06π}{30} }

\implies{\sf 0.002π}

\implies{\bf \red{\alpha = 2×10^{-3}π\:rad/s^2}}

\huge\underline{\underline{\bf \green{Answer-}}}

Angular Acceleration is {\bf \red{2×10^{-3}πrad/s^2}}

Similar questions