Physics, asked by shaheensiddiqui4695, 1 year ago

The angular velocity of a particle moving in a circle of radius 50 cm is increased in 5 min from 100 revolutions per minute to 400 revolutions per minute. Find tangential acceleration of the particle.

Answers

Answered by wwwgawandvidhisha200
58

r= 0.5m = 1÷2

T =5min =300 s

V1= 2 pi ×400÷60

v2 = 2 pi ×100÷60

Angular velocity = tv

V 1 = 2 pi ×100 ÷120 = 15 pi ÷3

V2= 2 pi ×400 ÷120 = 20 pi ÷ 3

A = v2 _ v1 ÷ t

=( 20 pi ÷3 - 15 pi ÷ 3 ) ÷ 300

= pi ÷ 60 m /s^2


Answered by KaurSukhvir
1

Answer:

Tangential acceleration of the particle corresponds to π/60ms⁻².

Explanation:

At time t=0, the angular velocity of particle ω₁ =\frac{200\pi }{60 }rads^{-1}

After time t=5min, angular velocity becomes ω₂  =\frac{800\pi }{60 }rads^{-1}

We know  angular acceleration \alpha = \frac{(\omega _{2} -\omega _{1})}{T}

where T = total time and T=5*60=300sec

Here \alpha =\frac{1}{300sec} (\frac{800\pi }{60 }rads^{-1}-\frac{200\pi }{60 }rads^{-1})=\frac{\pi }{30} rads^{-2}

For a particle  the tangential acceleration  \alpha=\alpha r

where r = 0.5m= radius of the circle

  ∴             a=(\frac{\pi }{30}) (0.5)ms^{-2}\\ \\ a=\frac{\pi }{60} ms^{-2}

Similar questions