Physics, asked by Anonymous, 6 months ago

the angular velocity of a wheel increases from 1200 to 4500 revolutions per minute in 10 second find its angular acceleration

Answers

Answered by Anonymous
13

\Large\bf{\color{indigo}GiVeN,} \\

Initial angular velocity \bf{(\omega_1)} = 1200 rev/min = \bf{\dfrac{1200}{60}\:=\:20\:rev/sec\:}

Final angular velocity \bf{(\omega_2)} = 4500 rev/min = \bf{\dfrac{4500}{60}\:=\:75\:rev/sec\:}

Time period = 10 sec

\bf\pink{We\:know\:that,} \\

\red\bigstar\:\:\bf{\color{coral}\omega_2\:=\:\omega_1\:+\:\alpha{t}\:} \\

:\implies\:\:\bf{\alpha{t}\:=\:\omega_2\:-\:\omega_1\:} \\

:\implies\:\:\bf{\alpha\:=\:\dfrac{\omega_2\:-\:\omega_1}{t}\:} \\

\bf\red{Where,} \\

\bf\blue{\alpha\:=\:Angular\:acceleration\:} \\

:\implies\:\:\bf{\alpha\:=\:\dfrac{75\:-\:20}{10}\:} \\

:\implies\:\:\bf{\alpha\:=\:\dfrac{55}{10}\:} \\

:\implies\:\:\bf\green{\alpha\:=\:5.5\:rev/sec^2\:} \\

\Large\bold\therefore Angular acceleration of the wheel is \bf\purple{5.5\:rev/sec^2\:}.

Similar questions