Physics, asked by yagmurmay02, 4 days ago

The angular velocity of an object is changed according to the law: w=A+Bt^2, where A=2 rad/s^2 , B=3 rad/s^3. For what angle will the object have rotated from time t1=1s to time t2=3s?

Answers

Answered by grane578
0

Answer:

We have been asked to calculate the following expression:

\longrightarrow \Bigg[\bigg(\dfrac{2}{3}\bigg)^{2}\Bigg]^{3} \times \bigg(\dfrac{1}{3}\bigg)^{-4} \times 3^{-4} \times 6^{-1}⟶[(

3

2

)

2

]

3

×(

3

1

)

−4

×3

−4

×6

−1

Hint: Try to simplify the expression.

Expression - A mathematical symbol, or combination of symbols, represent a value, or relation. Example: 2 + 2 = 42+2=4 .

Calculation:

Let's start solving our problem and understanding every step to achieve our end result.

\Bigg[\bigg(\dfrac{2}{3}\bigg)^{2}\Bigg]^{3} \times \bigg(\dfrac{1}{3}\bigg)^{-4} \times 3^{-4} \times 6^{-1}[(

3

2

)

2

]

3

×(

3

1

)

−4

×3

−4

×6

−1

Step 1. Calculating the power of the power.

\implies \bigg(\dfrac{2}{3}\bigg)^{6} \times \bigg(\dfrac{1}{3}\bigg)^{-4} \times 3^{-4} \times 6^{-1}⟹(

3

2

)

6

×(

3

1

)

−4

×3

−4

×6

−1

Step 2. When raising a fraction to the power, raise the numerator and denominator each to the power.

\implies \dfrac{2^{6}}{3^{6}} \times \bigg(\dfrac{1}{3}\bigg)^{-4} \times 3^{-4} \times 6^{-1}⟹

3

6

2

6

×(

3

1

)

−4

×3

−4

×6

−1

Step 3. Calculate the power.

\implies \dfrac{64}{729} \times \bigg(\dfrac{1}{3}\bigg)^{-4} \times 3^{-4} \times 6^{-1}⟹

729

64

×(

3

1

)

−4

×3

−4

×6

−1

Step 4. When raising a fraction to the power, raise the numerator and denominator each to the power.

\implies \dfrac{64}{729} \times \dfrac{1^{-4}}{3^{-4}} \times 3^{-4} \times 6^{-1}⟹

729

64

×

3

−4

1

−4

×3

−4

×6

−1

Step 5. If the exponent is negative, change it to a fraction.

\implies \dfrac{64}{729} \times \dfrac{\frac{1}{1^{4}}}{3^{-4}} \times 3^{-4} \times 6^{-1}⟹

729

64

×

3

−4

1

4

1

×3

−4

×6

−1

Step 6. Arrange the expression of the complex fraction.

\implies \dfrac{64}{729} \times \dfrac{1}{1^{4} \times 3^{-4}} \times 3^{-4} \times 6^{-1}⟹

729

64

×

1

4

×3

−4

1

×3

−4

×6

−1

Step 7. Arrange the terms multiplied by fractions.

\implies \dfrac{64 \times 3^{-4} \times 6^{1}}{729(1^{4} \times 3^{-4})}⟹

729(1

4

×3

−4

)

64×3

−4

×6

1

Step 8. Calculate the fraction.

\implies \dfrac{64}{2 \times 3^{7}}⟹

2×3

7

64

Step 9. Reduce the fraction.

\implies \dfrac{32}{3^{7}}⟹

3

7

32

Step 10. Calculate the power.

\implies \dfrac{32}{2187}⟹

2187

32

Final answer:

\boxed{\Bigg[\bigg(\dfrac{2}{3}\bigg)^{2}\Bigg]^{3} \times \bigg(\dfrac{1}{3}\bigg)^{-4} \times 3^{-4} \times 6^{-1} = \dfrac{32}{2187}}

[(

3

2

)

2

]

3

×(

3

1

)

−4

×3

−4

×6

−1

=

2187

32

Explanation:

We have been asked to calculate the following expression:

\longrightarrow \Bigg[\bigg(\dfrac{2}{3}\bigg)^{2}\Bigg]^{3} \times \bigg(\dfrac{1}{3}\bigg)^{-4} \times 3^{-4} \times 6^{-1}⟶[(

3

2

)

2

]

3

×(

3

1

)

−4

×3

−4

×6

−1

Hint: Try to simplify the expression.

Expression - A mathematical symbol, or combination of symbols, represent a value, or relation. Example: 2 + 2 = 42+2=4 .

Calculation:

Let's start solving our problem and understanding every step to achieve our end result.

\Bigg[\bigg(\dfrac{2}{3}\bigg)^{2}\Bigg]^{3} \times \bigg(\dfrac{1}{3}\bigg)^{-4} \times 3^{-4} \times 6^{-1}[(

3

2

)

2

]

3

×(

3

1

)

−4

×3

−4

×6

−1

Step 1. Calculating the power of the power.

\implies \bigg(\dfrac{2}{3}\bigg)^{6} \times \bigg(\dfrac{1}{3}\bigg)^{-4} \times 3^{-4} \times 6^{-1}⟹(

3

2

)

6

×(

3

1

)

−4

×3

−4

×6

−1

Step 2. When raising a fraction to the power, raise the numerator and denominator each to the power.

\implies \dfrac{2^{6}}{3^{6}} \times \bigg(\dfrac{1}{3}\bigg)^{-4} \times 3^{-4} \times 6^{-1}⟹

3

6

2

6

×(

3

1

)

−4

×3

−4

×6

−1

Step 3. Calculate the power.

\implies \dfrac{64}{729} \times \bigg(\dfrac{1}{3}\bigg)^{-4} \times 3^{-4} \times 6^{-1}⟹

729

64

×(

3

1

)

−4

×3

−4

×6

−1

Step 4. When raising a fraction to the power, raise the numerator and denominator each to the power.

\implies \dfrac{64}{729} \times \dfrac{1^{-4}}{3^{-4}} \times 3^{-4} \times 6^{-1}⟹

729

64

×

3

−4

1

−4

×3

−4

×6

−1

Step 5. If the exponent is negative, change it to a fraction.

\implies \dfrac{64}{729} \times \dfrac{\frac{1}{1^{4}}}{3^{-4}} \times 3^{-4} \times 6^{-1}⟹

729

64

×

3

−4

1

4

1

×3

−4

×6

−1

Step 6. Arrange the expression of the complex fraction.

\implies \dfrac{64}{729} \times \dfrac{1}{1^{4} \times 3^{-4}} \times 3^{-4} \times 6^{-1}⟹

729

64

×

1

4

×3

−4

1

×3

−4

×6

−1

Step 7. Arrange the terms multiplied by fractions.

\implies \dfrac{64 \times 3^{-4} \times 6^{1}}{729(1^{4} \times 3^{-4})}⟹

729(1

4

×3

−4

)

64×3

−4

×6

1

Step 8. Calculate the fraction.

\implies \dfrac{64}{2 \times 3^{7}}⟹

2×3

7

64

Step 9. Reduce the fraction.

\implies \dfrac{32}{3^{7}}⟹

3

7

32

Step 10. Calculate the power.

\implies \dfrac{32}{2187}⟹

2187

32

Final answer:

\boxed{\Bigg[\bigg(\dfrac{2}{3}\bigg)^{2}\Bigg]^{3} \times \bigg(\dfrac{1}{3}\bigg)^{-4} \times 3^{-4} \times 6^{-1} = \dfrac{32}{2187}}

[(

3

2

)

2

]

3

×(

3

1

)

−4

×3

−4

×6

−1

=

2187

32

Similar questions