Math, asked by Mahima751, 2 months ago

The ans is -2 but i dont know why so pls solve it deeply otherwise i report u​

Attachments:

Answers

Answered by MrImpeccable
3

QUESTION:

  • (√112 - √80)/(√20 - √28)

ANSWER:

To Solve:

  • (√112 - √80)/(√20 - √28)

Solution:

We need to solve,

\implies\dfrac{\sqrt{112}-\sqrt{80}}{\sqrt{20}-\sqrt{28}}

We can write the above mentioned expression as,

\implies\dfrac{\sqrt{2\times2\times2\times2\times7}-\sqrt{2\times2\times2\times2\times5}}{\sqrt{2\times2\times5}-\sqrt{2\times2\times7}}

So,

\implies\dfrac{\sqrt{4\times4\times7}-\sqrt{4\times4\times5}}{\sqrt{2^2\times5}-\sqrt{2^2\times7}}

So,

\implies\dfrac{\sqrt{4^2\times7}-\sqrt{4^2\times5}}{\sqrt{2^2\times5}-\sqrt{2^2\times7}}

Hence,

\implies\dfrac{4\sqrt{7}-4\sqrt{5}}{2\sqrt{5}-2\sqrt{7}}

Taking common in respective terms,

\implies\dfrac{4(\sqrt{7}-\sqrt{5})}{2(\sqrt{5}-\sqrt{7})}

On cancelling 4 with 2,

\implies\dfrac{4\!\!\!/^{\:2}(\sqrt{7}-\sqrt{5})}{2\!\!\!/(\sqrt{5}-\sqrt{7})}

\implies\dfrac{2(\sqrt{7}-\sqrt{5})}{(\sqrt{5}-\sqrt{7})}

Taking (-) common,

\implies\dfrac{-2(\sqrt{5}-\sqrt{7})}{(\sqrt{5}-\sqrt{7})}

So, (√5 - √7) gets cut,

Hence,

\implies\bf\dfrac{\sqrt{112}-\sqrt{80}}{\sqrt{20}-\sqrt{28}}=-2

Therefore, option d, -2, is correct.

Similar questions