Math, asked by rishika5379, 11 months ago

the answer is 50 but how pls give my answer pls ​

Attachments:

Answers

Answered by Sharad001
36

Question :-

 \sf \: what \: is \: the \: value \: of \:  {p}^{2}  +  \frac{1}{4 {p}^{2} }  \:  \: if \:  \\ \sf \:  p -  \frac{1}{2p}  = 7 \:

Answer :-

 \implies \: \boxed{ \sf  {p}^{2}  +  \frac{1}{4 {p}^{2} }  = 50} \\

To Find :-

 \implies \sf  {p}^{2}  +  \frac{1}{4 {p}^{2} }  \\

Solution :-

We have ,

  \mapsto \sf \: p -  \frac{1}{2p}  = 7 \:  \\  \\  \sf \red{squaring \: on \: both }\: sides \:  \\  \\  \mapsto \sf { \bigg \{p -  \frac{1}{2p} \bigg \} }^{2}  =  {7}^{2}  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{ \because \sf {(x  - y)}^{2}  =  {x}^{2}  +  {y}^{2}   -  2xy} \\  \\  \mapsto \sf {p}^{2}  +   { \bigg( \frac{1}{2p} \bigg) }^{2}    -  2 \times p \times  \frac{1}{2p} = 49 \\  \\  \mapsto \sf  {p}^{2}  +  \frac{1}{4 {p}^{2} }   - 1 = 49 \\  \\  \mapsto \sf {p}^{2}  +  \frac{1}{4 {p}^{2} }  = 49 + 1 \\  \\  \mapsto \boxed{ \sf  {p}^{2}  +  \frac{1}{4 {p}^{2} }  = 50} \\

Similar questions