Chemistry, asked by vidhiucan, 8 months ago

The answer mentioned for this is option 3 but I think the answer is option 2
What do you think? ​

Attachments:

Answers

Answered by RISH4BH
58

\large{\underline{\underline{\red{\tt{\purple{\leadsto } GiveN:-}}}}}

  • 9.85 g \sf \:BaCO_3 is decomposed .
  • Molecular weight of \sf BaCO_3 is 197 .

\large{\underline{\underline{\red{\tt{\purple{\leadsto } To\:FinD:-}}}}}

  • The Volume of \sf CO_2 obtained by its complete decomposition.

\large{\underline{\underline{\red{\tt{\purple{\leadsto } AnsweR:-}}}}}

Given that 9.85g of Barium carbonate is decomposed . We know , when we decompose it Carbon dioxide and Barium oxide .

\green{\tt \orange{\mapsto}The\: reaction\: would\:be:-}

\boxed{\red{\sf {\underset{\blue {Barium\: carbonate}}{BaCO_3}\xrightarrow{\green{Decomposition}}\underset{\blue{Barium\:oxide}}{BaO}+\underset{\blue{Carbon\: dioxide}}{CO_2}}}}

This is a balanced chemical reaction and from the reaction it is clear that one mole of barium carbonate decomposes to give one mole of carbon dioxide.

\sf{\purple\longrightarrow Let's\: calculate\:the\:number\:of\; moles:-}

We can find number of moles as ,

\boxed{\pink{\dag}\green{\bf n(moles)\:\:=\:\:\dfrac{Given\:Weight}{Molecular\:weight}}}

\tt Here

  • Given mass is 9.85g
  • Gram Molecular mass is 197 g.

\tt:\implies n(moles)=\dfrac{Given\:weight}{Molecular\: weight}

\tt:\implies n(moles)=\dfrac{9.85g}{197g}

\tt:\implies n(moles)=\dfrac{\cancel{985}}{100\times\cancel{197}}

\underline{\boxed{\red{\sf{\purple{\longmapsto}\:\:n(moles)\:\:\:\:=\:\:\:\:0.05}}}}

Since one more of barium carbonate gives one mole of \sf CO_2 hence the number of moles of \sf CO_2 formed will be 0.05.

\sf \blue{Hence\:volume\:of\:CO_2\:at\: STP\:will\:be:-}

\tt:\implies Vol(CO_2)= V(STP) \times n(moles)

\tt:\implies Vol(CO_2)=22.4\times 0.05

\tt:\implies Vol(CO_2)=\dfrac{224}{10}\times\dfrac{5}{100}

\underline{\boxed{\red{\sf{\purple{\longmapsto}\:\:Vol(Carbon\: dioxide)\:\:\:\:=\:\:\:\:1 .12L}}}}

\boxed{\bf{\red{\dag}\blue{Hence\: the\: correct\:option\:is\:[b]\:1.12L.}}}

Similar questions