Math, asked by mcdyno16, 5 hours ago

the approximate value of sin(31°) given that 1°=0.0175, cos 30°=0.8660 is​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Let assume that

\rm :\longmapsto\:f(x) = sinx \:  \:  \: where \: x \:  =  \: 30 \degree

So,

\rm :\longmapsto\:f(x + \triangle x) = sin(x + \triangle x) \:  \:  \: where \: \triangle x \:  =  \: 1 \degree

Using definition of differentiation, we have

\rm :\longmapsto\:f(x + \triangle x) = f(x) + f'(x)\triangle x

On substituting the values of

\rm :\longmapsto\:f(x) = sinx

\rm :\longmapsto\:f'(x) = cosx

So, we have .

\rm :\longmapsto\:sin(x + \triangle x) = sinx + cosx \times \triangle x

So, we have now on substituting the values

\rm :\longmapsto\:sin(30\degree + 1\degree) = sin30\degree + cos30\degree \times 1\degree

\rm :\longmapsto\:sin31\degree = 0.5  +0.8660  \times 0.0175

\rm :\longmapsto\:sin31\degree = 0.5  +0.0015

\rm :\longmapsto\:sin31\degree = 0.5015

Hence,

 \purple{\rm\implies \:\boxed{\tt{  \:  \: sin31\degree = 0.5015 \:  \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

LEARN MORE

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by OoAryanKingoO78
3

Answer:

\large\underline{\sf{Solution-}}

Let assume that

\rm :\longmapsto\:f(x) = sinx \:  \:  \: where \: x \:  =  \: 30 \degree

So,

\rm :\longmapsto\:f(x + \triangle x) = sin(x + \triangle x) \:  \:  \: where \: \triangle x \:  =  \: 1 \degree

Using definition of differentiation, we have

\rm :\longmapsto\:f(x + \triangle x) = f(x) + f'(x)\triangle x

On substituting the values of

\rm :\longmapsto\:f(x) = sinx

\rm :\longmapsto\:f'(x) = cosx

So, we have .

\rm :\longmapsto\:sin(x + \triangle x) = sinx + cosx \times \triangle x

So, we have now on substituting the values

\rm :\longmapsto\:sin(30\degree + 1\degree) = sin30\degree + cos30\degree \times 1\degree

\rm :\longmapsto\:sin31\degree = 0.5  +0.8660  \times 0.0175

\rm :\longmapsto\:sin31\degree = 0.5  +0.0015

\rm :\longmapsto\:sin31\degree = 0.5015

Hence,

 \pink{\sf\implies \:\boxed{\tt{  \:  \: sin31\degree = 0.5015 \:  \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

LEARN MORE

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions