Math, asked by Anoopkumar2616, 2 days ago

The arc length of a circle having radius 15 cm and subtending an angle 105 degree at the centre of circles is

Answers

Answered by varadad25
51

Answer:

The arc length of the circle is 27.48 cm.

Step-by-step-explanation:

We have given that,

  • Radius of circle ( r ) = 15 cm
  • Angle subtended ( θ ) = 105°

We have to find the arc length of the circle.

We know that,

\displaystyle{\pink{\sf\:Arc\:length\:=\:\dfrac{\theta}{360}\:\times\:2\:\pi\:r}}

\displaystyle{\implies\sf\:Arc\:length\:=\:\dfrac{\cancel{105}}{\cancel{360}}\:\times\:2\:\times\:3.14\:\times\:15}

\displaystyle{\implies\sf\:Arc\:length\:=\:\dfrac{\cancel{35}}{\cancel{120}}\:\times\:30\:\times\:3.14}

\displaystyle{\implies\sf\:Arc\:length\:=\:\dfrac{7}{\cancel{24}}\:\times\:\cancel{30}\:\times\:3.14}

\displaystyle{\implies\sf\:Arc\:length\:=\:\dfrac{7}{4}\:\times\:5\:\times\:3.14}

\displaystyle{\implies\sf\:Arc\:length\:=\:1.75\:\times\:5\:\times\:3.14}

\displaystyle{\implies\sf\:Arc\:length\:=\:5.495\:\times\:5}

\displaystyle{\implies\sf\:Arc\:length\:=\:27.475}

\displaystyle{\implies\underline{\boxed{\red{{\sf\:Arc\:length\:\approx\:27.48\:cm\:}}}}}

∴ The arc length of the circle is 27.48 cm.

Answered by MяMαgıcıαη
113

Question:

  • The arc length of a circle having radius 15 cm and subtending an angle 105° at the centre of circles is?

Answer:

  • Length of arc is 27.5 cm (approx).

EXPLANATION :

\LARGE{\underline{\underline{\text{Given\::-}}}}

  • Radius of circle (r) = 15 cm
  • Angle at the centre of circle (θ) = 105°

\LARGE{\underline{\underline{\text{To\:Find\::-}}}}

  • Length of arc of a circle?

\LARGE{\underline{\underline{\text{Formula\:Used\::-}}}}

\quad\star\:{\underline{\boxed{\frak{Length\:of\:arc = \dfrac{\theta}{360}\:\times\:2\pi r}}}}

Where,

  • θ denotes angle at centre
  • π denotes pi
  • r denotes radius of circle

We have,

  • Angle at centre (θ) = 105°
  • Pi (π) = 22/7
  • Radius of circle (r) = 15 cm

\LARGE{\underline{\underline{\text{Solution\::-}}}}

According to the question,

\\ \hookrightarrow\:\sf Length\:of\:arc = \dfrac{\theta}{360}\:\times\:2\pi r

Putting all values in the formula we get,

\\ \hookrightarrow\:\sf Length\:of\:arc = \dfrac{\cancel{105}}{360}\:\times\:2\:\times\:\dfrac{22}{\cancel{7}}\:\times\:15

\\ \hookrightarrow\:\sf Length\:of\:arc = {\cancel{\dfrac{15}{360}}}\:\times\:2\:\times\:22\:\times\:15

\\ \hookrightarrow\:\sf Length\:of\:arc = \dfrac{1}{\cancel{24}}\:\times\:\cancel{44}\:\times\:15

\\ \hookrightarrow\:\sf Length\:of\:arc = \dfrac{1}{6}\:\times\:11\:\times\:15

\\ \hookrightarrow\:\sf Length\:of\:arc = \dfrac{11\:\times\:15}{6}

\\ \hookrightarrow\:\sf Length\:of\:arc = \dfrac{165}{6}

\\ \hookrightarrow\:\underline{\boxed{\bf{Length\:of\:arc\:\approx\:27.5\:cm}}}\:\bigstar

Hence, length of arc is 27.5 cm (approx).

EXTRA INFORMATION :

↠ Area of minor sector

ㅤㅤㅤㅤㅤ= θ/360 × πr²

↠ Area of major sector

ㅤㅤㅤㅤㅤ= πr² - Area of minor sector

↠ Area of minor segment

ㅤㅤㅤㅤㅤ= Area of corresponding sector- Area of corresponding ∆

↠ Area of major segment

ㅤㅤㅤㅤㅤ= πr² - Area of minor segment ↠ Length of arc of a sector

ㅤㅤㅤㅤㅤ= θ/360 × 2πr

↠ Area of circle

ㅤㅤㅤㅤㅤ= πr²

↠ Circumference of circle

ㅤㅤㅤㅤㅤ= 2πr

\red{\rule{45pt}{7pt}}\blue{\rule{45pt}{7pt}}\pink{\rule{45pt}{7pt}}\purple{\rule{45pt}{7pt}}

Similar questions