Math, asked by dhasingh1976, 1 month ago

The are a of trapezium is 204cm² and its height is 12cm.

If one of the parallel sides is 15cm, find the length of other

parallel side​

Answers

Answered by thokchomtomthin38
1

Answer:

Let b be the length of the other parallel side

Then

a=15 cm h=12cm

area of trapezium=204

1/2(a+b)*h=204

1/2(15+b)*12=204

180+12b/2=204

180+12b=204*2

180+12b=408

12b=408-180

12b=228

b=228/12

b=19 cm

Answered by Anonymous
43

Answer:

{\large{\underline{\underline{\bf{\green{Given\:} : -}}}}}

  • Area of trapezium = 204 cm².
  • Height of trapezium = 12 cm.
  • One parallel sides of trapezium = 15 cm

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{\green{To \: Find}\: : -}}}}}

  • Length of other parallel side of trapezium.

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{\green{Concept}\: : - }}}}}

Here the concept of Area of Trapezium has been used. We are given that Area of trapezium is 204 cm², height of cylinder is 12 cm and one parallel side if trapezium is 15 cm. We need to find the length of Rectangle.

So, we'll find the other parallel side of trapezium by insert the values in the required  formula.

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{\green{Using \: Formula}\: : -}}}}}

  • Area of trapezium = ½(a + b)h

\pink\bigstar Where

  • a and b = bases of trapezium
  • h = height (the perpendicular distance between a and b)

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{\green{Solution}\: : - }}}}}

\pink\bigstar Finding other parallel side of trapezium

{\dashrightarrow{\sf{Area \:  of \:  trapezium =  \dfrac{1}{2}  \bigg(a + b \bigg)h}}}

  • Substuting the values

{\dashrightarrow{\sf{204 \:  {cm}^{2}  =  \dfrac{1}{2}  \bigg(15 + b \bigg)12}}}

{\dashrightarrow{\sf{204  \times 2  = \bigg(15 + b \bigg)12}}}

{\dashrightarrow{\sf{408  = \bigg(15 + b \bigg)12}}}

{\dashrightarrow{\sf{408  = \bigg(15 \times 12+ b \times 12 \bigg)}}}

{\dashrightarrow{\sf{408  = \bigg(180 + 12b \bigg)}}}

{\dashrightarrow{\sf{ 12b  = 408 - 180}}}

{\dashrightarrow{\sf{ 12b  = 228}}}

{\dashrightarrow{\sf{b  = \dfrac{228}{12}}}}

{\dashrightarrow{\sf{b  =  \cancel{\dfrac{228}{12}}}}}

{\dashrightarrow{\sf{b  = 19 \: cm}}}

\bigstar\red{\underline{\boxed{\bf{Other \:  parallel \:  side  \: of \: trapezium = 19  \: cm}}}}

The lenght of other parallel side of trapezium is 19 cm.

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{Verification\: : - }}}}}

\pink\bigstar Checking our answer

{\dashrightarrow{\sf{Area \:  of \:  trapezium =  \dfrac{1}{2}  \bigg(a + b \bigg)h}}}

  • Substuting the values

{\dashrightarrow{\sf{204=  \dfrac{1}{2}  \bigg(15+ 19 \bigg)12}}}

{\dashrightarrow{\sf{204=  \dfrac{1}{2}  \bigg( \: 34  \: \bigg)12}}}

{\dashrightarrow{\sf{204=  \dfrac{1}{2}  \times  34   \times 12}}}

{\dashrightarrow{\sf{204=  \dfrac{1}{\cancel{2}}  \times  34   \times  \cancel{12}}}}

{\dashrightarrow{\sf{204=34  \times 6}}}

{\dashrightarrow{\sf{204 \:  {cm}^{2} =204 \:  {cm}^{2} }}}

\bigstar\red{\underline{\boxed{\bf{LHS = RHS}}}}

Hence Verified!

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{\green{Diagram } \:  : - }}}}}

\setlength{\unitlength}{1.5cm}\begin{picture}\thicklines\qbezier(0,0)(0,0)(1,2.2)\qbezier(0,0)(0,0)(4,0)\qbezier(3,2.2)(4,0)(4,0)\qbezier(1.5,2.2)(0,2.2)(3,2.2)\put(0.8,2.4){$\bf A $}\put(3,2.4){$\bf D $}\put(-0.3,-0.3){$\bf B$}\put(4,-0.3){$\bf C$}\put(4.4,0){\vector(0,0){2.2}}\put( 4.4, 0){\vector(0,-1){0.1}}\put(4.6,1){$\bf 12\ cm$}\put(0, -0.5){\vector(1,0){4}}\put(0, -0.5){\vector( - 1, 0){0.1}}\put(1.7, - 0.9){$\bf 19\ cm $}\put(0.8, 2.8){\vector(1,0){2.5}}\put(0.8, 2.8){\vector( - 1, 0){0.1}}\put(1.7, 3){$\bf 15\ cm $}\end{picture}

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{\green{Learn \: More}\: : - }}}}}

\pink\bigstar Formulas of area :

\boxed{\begin {minipage}{9cm}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {minipage}}

\begin{gathered}\end{gathered}

{\large{\underline{\underline{\bf{\green{Request}\: : - }}}}}

  •  If there is any difficulty viewing this answer in app, kindly see this answer at website Brainly.in for clear steps and understanding.
  •  Here is the question link : https://brainly.in/question/46075864

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions