Math, asked by lakshya130878, 4 months ago

the area and length of one diagonal of a rhombus are given as 200 CM square and 10 cm respectively the length of other diagonal is​

Answers

Answered by suraj5070
236

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

\tt The \:area\: and\: length\: of \:one\: diagonal\: of \:a \:rhombus\\\tt are\: given \:as \:200\: cm\: square\: and\: 10 \:cm\:respectively\\\tt the \:length \:of\: other\: diagonal \:is

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 \sf \bf {\boxed {\mathbb {GIVEN}}}

  •  \sf\bf Area\:of\:Rhombus(A) = 200 \:cm
  •  \sf \bf Length \:of \:first \:diagonal (d_1) = 10\:cm

 \sf \bf {\boxed {\mathbb {TO\:FIND}}}

  • \sf \bf Length \:of \:second\:diagonal (d_1)

 \sf \bf {\boxed {\mathbb {SOLUTION}}}

 {\color {red} \underline {\sf Let\:the\:second \:diagonal \:be=x}}

 {\boxed {\boxed {\color{blue} {\sf \bf A=\dfrac{d_1 \times d_2}{2}}}}}

  •  \sf A=area \:of \:Rhombus
  •  \sf d_1=first \:diagonal
  •  \sf d_2=second\:diagonal

 {\underbrace {\overbrace {\color{orange} {\sf Substitute\: the\: values}}}}

 \sf \bf \implies 200=\dfrac{10\times x}{2}

 \sf \bf \implies 200\times 2=10x

 \sf \bf \implies 400=10x

 \sf \bf \implies x=\dfrac{400}{10}

 \sf \bf \implies x=\dfrac{40\cancel {0}}{1\cancel {0}}

 \implies {\boxed {\color {green} {\sf \bf x=40\:cm}}}

 {\color {purple} \underline {\tt \therefore The\:length \:of \:second\:diagonal \:is \:40\:cm}}

 \sf \bf \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

___________________________________________

 \sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 \sf Area \:of \:rhombus =\dfrac{d_1\times d_2}{2}

 \sf Area \:of \:rectangle =l \times b

 \sf Area \:of \:triangle =\dfrac{1}{2}bh

Similar questions