Math, asked by Anonymous, 2 months ago

the area and length of one diagonal of a rhombus are given as 200 CM square and 10 cm respectively the length of other diagonal is​

Answers

Answered by gaurikhokiya
1

Answer:

40 cm

hope you able to understand please like and subscribe

Answered by Anonymous
3

\sf \bf \huge {\boxed {\mathbb {QUETION}}}

\begin{gathered}\tt The \:area\: and\: length\: of \:one\: diagonal\: of \:a \:rhombus\\\tt are\: given \:as \:200\: cm\: square\: and\: 10 \:cm\:respectively\\\tt the \:length \:of\: other\: diagonal \:is\end{gathered}

\sf \bf \huge {\boxed {\mathbb {ANSWER}}}

\sf \bf {\boxed {\mathbb {GIVEN}}}

\bf {Area\:of\:Rhombus(A) = 200 \:cm}}

\sf \bf Length \:of \:first \:diagonal (d_1) = 10\:cm}}

\sf \bf {\boxed {\mathbb {TO\:FIND}}}

\sf \bf Length \:of \:second\:diagonal (d_1)}}

\sf \bf {\boxed {\mathbb {SOLUTION}}}

\underline{\sf{Let\:the\:second\:diagonal\:be\:=\:x}}

{\boxed {\boxed {\color{blue} {\sf \bf A=\dfrac{d_1 \times d_2}{2}}}}}

\sf{A\:=\:area \:of \:Rhombus}}

\sf{ d_1=first \:diagonald}}

\sf {d_2=second\:diagonald}}

{\underbrace {\overbrace {\color{orange} {\sf Substituting\: the\: values}}}}

\sf \bf \implies 200=\dfrac{10\times x}{2}}}[tex]</p><p> </p><p>[tex]\sf \bf \implies 200\times 2=10x}}

\sf \bf \implies 400=10x}}

\sf \bf \implies x=\dfrac{400}{10}}}

{\boxed{\sf{x\:=\:40\:cm}}

{\color {purple} \underline {\tt \therefore The\:length \:of \:second\:diagonal \:is \:40\:cm}}

Similar questions