Math, asked by BrainlyPython, 4 months ago

The Area bounded between the parabola x²=y/4 and x²=9y, y =2

a) 20√2 b) 10√2 c)20√2/3 d)10√2​

Answers

Answered by Asterinn
14

We have to find out area bounded between x²=y/4 , x²=9y and , y =2 .

So , first we will draw rough graph of parabola [refer attached picture ]

Now, we have to find out area of shaded portion which is bounded by both the parabolas and the line.

 \rm  \rightarrow {x}^{2}  = 9y \\  \\ \rm  \rightarrow {x} =  \sqrt{9y}\\  \\ \rm  \rightarrow {x} = 3 \:  \sqrt{y}

________________

\rm  \rightarrow  {x}^{2}  =   \dfrac{y}{4}  \\  \\ \rm  \rightarrow  {x}=    \sqrt{\dfrac{y}{4} } \\  \\ \rm  \rightarrow  {x}=    {\dfrac{\sqrt{y}}{2} }

 \rm \longrightarrow \displaystyle \rm Required \:  Area \:  (A) = 2\int_{0}^{2} \: (3 \sqrt{y}  -  \frac{ \sqrt{y} }{2} ) \rm dy

 \rm \longrightarrow \displaystyle\rm A =  2\int_{0}^{2} \: (3 \sqrt{y}  -  \frac{ \sqrt{y} }{2} ) \rm dy

\rm \longrightarrow \displaystyle\rm A = 2  \bigg[(2 \times  {y}^{ \frac{3}{2} })  -  \dfrac{ 1 }{3}( {y})^{ \frac{3}{2} }  \bigg]_{0}^{2}

\rm \longrightarrow \displaystyle\rm A = 2 (2 \times  {2}^{ \frac{3}{2} })  -  \dfrac{ 2}{3}( {2})^{ \frac{3}{2} }  - (0 - 0)

\rm \longrightarrow \displaystyle\rm A =   {(2)}^{ \frac{7}{2} } -  \dfrac{ 1}{3}( {2})^{ \frac{5}{2} }

\rm \longrightarrow \displaystyle\rm A =   {(2)}^{ \frac{5}{2} }   {(2)}^{ \frac{2}{2} }-  \dfrac{ 1}{3}( {2})^{ \frac{5}{2} }

\rm \longrightarrow \displaystyle\rm A =   {(2)}^{ \frac{5}{2} }  ( 2-  \dfrac{ 1}{3})

\rm \longrightarrow \displaystyle\rm A =    \sqrt{ {2}^{5} }    \times (  \dfrac{ 6 - 1}{3})

\rm \longrightarrow \displaystyle\rm A =   4 \sqrt{ {2}  }   \:   \times (  \dfrac{ 5}{3})

\rm \longrightarrow \displaystyle\rm A =   \frac{20}{3}   \sqrt{ {2}  }    \:  \:  \: units

Therefore , option c)20√2/3 is correct.

Attachments:

Anonymous: Keep doing the good job ^^
Asterinn: Thank you !
QueenOfStars: Your attention to detail puts you at the top! Great going dear! :D
QueenOfStars: I acknowledge the extra mile you go and your selfless efforts are worth plausible!
QueenOfStars: :)
Asterinn: Thank you!
BrainlyPython: Tq :)
yashwanth102030: nice answer and pls make mathdude500 mathsaryabhatta coz he is answering proper answers to the question
yashwanth102030: and that too in maths
Answered by mathdude500
5

To find :-

  • The Area bounded between the parabola x² = y/4 and x² = 9y, y = 2.

─━─━─━─━─━─━─━─━─━─━─━─━─

\huge {AηsωeR} ✍

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\blue{\bold{Formula \:  used:-  }}

To find the area bounded by curve with respect to y axis between the lines y = a and y = b is given by

\bf \:  ⟼ \int_{a}^{b} xdy

─━─━─━─━─━─━─━─━─━─━─━─━─

\underline{\boxed{\star{\sf{\blue{For \:  the  \: first \:  curve :  {x}^{2}   = \dfrac{y}{4} }}}}}

Its a upper parabola having vertex at (0,0) and

\sf \:  ⟼x = \dfrac{ \sqrt{y} }{2}

So, the area bounded by the curve x² = y/4 between the lines y = 0 and y = 2 and x = 0 is evaluated as

\sf \:  Area_1 = \int_{0}^{2} xdy

\sf \:   = \int_{0}^{2} \dfrac{ \sqrt{y} }{2}dy

\sf \:   = \dfrac{1}{2} \int_{0}^{2}  \sqrt{y} dy

\sf \:   = \dfrac{1}{2} \int_{0}^{2}  {y}^{ \frac{1}{2} } dy

\sf \:   = \dfrac{1}{2}  \times \dfrac{2}{3} [ {y}^{ \frac{3}{2} } ]_0^2

\sf \:   = \dfrac{1}{3}  {(2)}^{ \frac{3}{2} }

\sf \:   = \dfrac{1}{3}  {( \sqrt{2} )}^{2 \times  \frac{3}{2} }  = \dfrac{2}{3}  \sqrt{2}  \: sq. \: units

─━─━─━─━─━─━─━─━─━─━─━─━─

\underline{\boxed{\star{\sf{\blue{For \:  the  \: second \:  curve :  {x}^{2}   = 9y}}}}}

Its an upper parabola with vertex at (0,0) and

\sf \:  ⟼x = 3 \sqrt{y}

So, the area bounded by the curve x² = y/4 between the lines y = 0 and y = 2 and x = 0 is evaluated as

\sf \:  Area_2 = \int_{0}^{2} xdy

\sf \:   = \int_{0}^{2} 3 \sqrt{y} dy

\sf \:   = 3\int_{0}^{2}  \sqrt{y} dy

\sf \:   = 3 \int_{0}^{2}  {y}^{ \frac{1}{2} } dy

\sf \:   = 3 \int_{0}^{2}  {y}^{ \frac{1}{2} } dy

\sf \:   =3  \times \dfrac{2}{3} [ {y}^{ \frac{3}{2} } ]_0^2

\sf \:   = 2 \times {(2)}^{ \frac{3}{2} }  = 2 \times 2 \times  \sqrt{2}  = 4 \sqrt{2} \: sq. \: units

─━─━─━─━─━─━─━─━─━─━─━─━─

\bf\implies \:Required \:  area = 2(Area_2 - Area_1)

\sf \:   =2( 4 \sqrt{2}  -  \dfrac{2}{3}  \sqrt{2} )

 = 2(\dfrac{12 \sqrt{2} - 2 \sqrt{2}  }{3} )

\sf \:   = 2 \times \dfrac{10 \sqrt{2} }{3}

 \sf \:   = \dfrac{20 \sqrt{2} }{3}  \: sq. \: units

─━─━─━─━─━─━─━─━─━─━─━─━─

\large{\boxed{\boxed{\bf{Option (c) \:  is  \: correct}}}}

─━─━─━─━─━─━─━─━─━─━─━─━─

Attachments:

QueenOfStars: Truly speaking, it's worth a million praises! :D
QueenOfStars: Keep it up dear! :)
mathdude500: Thank you so much
mathdude500: Thanks alot for your appreciation
Similar questions