Math, asked by kousshik, 9 months ago

The
area bounded
bounded by the
lines |2x-3| +|3y+4|=5 is​

Answers

Answered by radhikapi20fever22
2

Answer:

This problem is not difficult, but tedious. Here is what needs to be done.

Consider four cases

2x-3>0, 3y-2>0 then (2x-3)+(3y-2) =6 or y=-(2/3)x+11/3

2x-3>0, 3y-2<0 then (2x-3)-(3y-2) =6 or y= (2/3)x +7/3

2x-3<0, 3y-2>0 then -(2x-3)+(3y-2) =6 or y =(2/3)x+11/3

2x-3<0, 3y-2<0 then -(2x-3)-(3y-2) =6 or y= -(2/3)x + 1/3.

Hope it helps u dear

Answered by shadowsabers03
8

The lines are given by the equation,

\longrightarrow|2x-3|+|3y+4|=5

or,

\longrightarrow|3y+4|=5-|2x-3|

Case 1:-

Let x\geq\dfrac{3}{2}\ \implies\ |2x-3|=2x-3.

Case 1.1:-

Let y\geq-\dfrac{4}{3}\ \implies\ |3y+4|=3y+4.

Then the equation becomes,

\longrightarrow3y+4=5-2x+3

\longrightarrow3y+4=8-2x

\longrightarrow\underline{y=\dfrac{4-2x}{3}}

Case 1.2:-

Let y\leq-\dfrac{4}{3}\ \implies\ |3y+4|=-3y-4.

Then the equation becomes,

\longrightarrow-3y-4=5-2x+3

\longrightarrow3y+4=2x-8

\longrightarrow\underline{y=\dfrac{2x-12}{3}}

We need to find the point of intersection of these two lines.

Equating them,

\longrightarrow \dfrac{4-2x}{3}=\dfrac{2x-12}{3}

\longrightarrow x=4

So the area bounded by these two lines, from x=\dfrac{3}{2} to x=4 is,

\displaystyle\longrightarrow A_1=\int\limits_{\frac{3}{2}}^4\left(\dfrac{4-2x}{3}-\dfrac{2x-12}{3}\right)\ dx

\displaystyle\longrightarrow A_1=\dfrac{1}{3}\int\limits_{\frac{3}{2}}^4\left(16-4x\right)\ dx

\displaystyle\longrightarrow A_1=\dfrac{1}{3}\left[16\big[x\big]_{\frac{3}{2}}^4-2\left[x^2\right]_{\frac{3}{2}}^4\right]

\displaystyle\longrightarrow A_1=\dfrac{1}{3}\left[16\cdot\dfrac{5}{2}-2\cdot\dfrac{55}{4}\right]

\displaystyle\longrightarrow A_1=\dfrac{25}{6}

Case 2:-

Let x\leq\dfrac{3}{2}\ \implies\ |2x-3|=3-2x.

Case 2.1:-

Let y\geq-\dfrac{4}{3}\ \implies\ |3y+4|=3y+4.

Then the equation becomes,

\longrightarrow3y+4=5+2x-3

\longrightarrow3y+4=2x+2

\longrightarrow\underline{y=\dfrac{2x-2}{3}}

Case 2.2:-

Let y\leq-\dfrac{4}{3}\ \implies\ |3y+4|=-3y-4.

Then the equation becomes,

\longrightarrow-3y-4=5+2x-3

\longrightarrow3y+4=-2x-2

\longrightarrow\underline{y=\dfrac{-2x-6}{3}}

We need to find the point of intersection of these two lines.

Equating them,

\longrightarrow\dfrac{2x-2}{3}=\dfrac{-2x-6}{3}

\longrightarrow x=-1

So the area bounded by these two lines, from x=-1 to x=\dfrac{3}{2} is,

\displaystyle\longrightarrow A_2=\int\limits_{-1}^{\frac{3}{2}}\left(\dfrac{2x-2}{3}-\dfrac{-2x-6}{3}\right)\ dx

\displaystyle\longrightarrow A_2=\dfrac{1}{3}\int\limits_{-1}^{\frac{3}{2}}\left(4x+4\right)\ dx

\displaystyle\longrightarrow A_2=\dfrac{1}{3}\left[2\left[x^2\right]_{-1}^{\frac{3}{2}}+4\big[x\big]_{-1}^{\frac{3}{2}}\right]

\displaystyle\longrightarrow A_2=\dfrac{1}{3}\left[2\cdot\dfrac{5}{4}+4\cdot\dfrac{5}{2}\right]

\displaystyle\longrightarrow A_2=\dfrac{25}{6}

Hence the total area is,

\longrightarrow A=A_1+A_2

\displaystyle\longrightarrow A=\dfrac{25}{6}+\dfrac{25}{6}

\displaystyle\longrightarrow\underline{\underline{A=\dfrac{25}{3}}}

Similar questions