Math, asked by sushantha8818, 1 month ago

the area bounded by the curve x2/ a2 + y2 /b2 =1

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given curve is

\rm :\longmapsto\:\dfrac{ {x}^{2} }{ {a}^{2} }  + \dfrac{ {y}^{2} }{ {b}^{2} }  = 1

represents the equation of ellipse intersects the x- axis at (a, 0) and (- a, 0) and intersects the y - axis at (0, b) and (0, - b)

Again,

\rm :\longmapsto\:\dfrac{ {x}^{2} }{ {a}^{2} }  + \dfrac{ {y}^{2} }{ {b}^{2} }  = 1

\rm :\longmapsto\:\dfrac{ {y}^{2} }{ {b}^{2} }  = 1 - \dfrac{ {x}^{2} }{ {a}^{2} }

\rm :\longmapsto\:\dfrac{ {y}^{2} }{ {b}^{2} }  = \dfrac{ {a}^{2}  -  {x}^{2} }{ {a}^{2} }

\rm :\longmapsto\: {y}^{2} = {b}^{2}  \bigg[\dfrac{ {a}^{2}  -  {x}^{2} }{ {a}^{2} }\bigg]

\bf\implies \:\boxed{ \tt{ \: y =  \frac{b}{a} \sqrt{ {a}^{2} -  {x}^{2}} \:  \: }}

So, required area bounded by the given curve is

\rm \:  =  \:4\displaystyle\int_0^a \: ydx

\rm \:  =  \:4\displaystyle\int_0^a \:  \frac{b}{a} \sqrt{ {a}^{2}  -  {x}^{2} }  dx

\rm \:  =  \:\dfrac{4b}{a}\displaystyle\int_0^a \sqrt{ {a}^{2}  -  {x}^{2} } \: dx

\rm \:  =\dfrac{4b}{a}\bigg[\dfrac{x}{2}  \sqrt{ {a}^{2}  -  {x}^{2} } +  \dfrac{ {a}^{2} }{2} {sin}^{ - 1} \dfrac{x}{a} \bigg]_0^a

\rm \:  =\dfrac{4b}{a}\bigg[\dfrac{a}{2}  \sqrt{ {a}^{2}  -  {a}^{2} } +  \dfrac{ {a}^{2} }{2} {sin}^{ - 1} \dfrac{a}{a}  - 0 -  {sin}^{ - 1}0 \bigg]

\rm \:  =\dfrac{4b}{a}\bigg[\dfrac{ {a}^{2} }{2} {sin}^{ - 1}1\bigg]

\rm \:  =\dfrac{4b}{a}\bigg[\dfrac{ {a}^{2} }{2}  \times \dfrac{\pi}{2} \bigg]

\rm \:  =  \:\pi \: ab \: square \: units

Attachments:
Similar questions