Math, asked by manisirireddy8749, 1 day ago

The area enclosed by a triangle whose vertices Area(1,2,-3) B(0,0,0) C(2,4,7) is ?

Answers

Answered by senboni123456
6

Answer:

Step-by-step explanation:

Given, vertices of the triangle are \tt{A(1,2,-3), B(0,0,0), C(2,4,7)}

Now,

Let \sf{\vec{a}} denotes the side BA of the triangle and \sf{\vec{b}} denotes the side BC of the triangle.

So,

\sf{\vec{a}=\hat{i}+2\hat{j}-3\hat{k}}

And,

\sf{\vec{b}=2\hat{i}+4\hat{j}+7\hat{k}}

Now,

\sf{Area\,\,\,of\,\,\,triangle\,\,\,,\triangle=\dfrac{1}{2}\,|\vec{a}\times\vec{b}|}

\sf{\implies\triangle=\dfrac{1}{2}\,\left|\left|\begin{array}{ccc}\sf{\hat{i}}&\sf{\hat{j}}&\sf{\hat{k}}\\1&2&-3\\2&4&7\end{array}\right|\right| }

\sf{\implies\triangle=\dfrac{1}{2}\,\left|\sf{\hat{i}}\left|\begin{array}{cc}\sf{2&-3\\4&7\end{array}\right|-\sf{\hat{j}}\left|\begin{array}{cc}\sf{1&-3\\2&7\end{array}\right|+\sf{\hat{k}}\left|\begin{array}{cc}\sf{1&2\\2&4\end{array}\right|\right| }

\sf{\implies\triangle=\dfrac{1}{2}\,\left|\sf{\hat{i}}(14+12)-\sf{\hat{j}}(7+6)+\sf{\hat{k}}(4-4)\right| }

\sf{\implies\triangle=\dfrac{1}{2}\,\left|26\sf{\hat{i}}-13\sf{\hat{j}}\right| }

\sf{\implies\triangle=\dfrac{1}{2}\,\times13\cdot\left|2\sf{\hat{i}}-\sf{\hat{j}}\right| }

\sf{\implies\triangle=\dfrac{1}{2}\,\cdot13\cdot\sqrt{4+1} }

\sf{\implies\triangle=\dfrac{1}{2}\,\cdot13\cdot\sqrt{5} }

\sf{\implies\triangle=\dfrac{13\sqrt{5}}{2} }

Similar questions