Math, asked by bhagyaachyut, 5 hours ago

The area enclosed by the curve y= V4-x² and the line y = |x| is is what​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

The given curves are

\rm :\longmapsto\:y =  \sqrt{4 -  {x}^{2} }

and

\rm :\longmapsto\:y =  |x|

Now,

\rm :\longmapsto\:y =  \sqrt{4 -  {x}^{2} }

represents a semicircle whose center is (0, 0) and radius 2 units respectively.

and

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:y =  |x|  = \begin{cases} &\sf{ - x \:  \: when \: x < 0}  \\ \\ &\sf{ \: x \:  \: when \: x \geqslant 0} \end{cases}\end{gathered}\end{gathered}

So, represents two lines passes through the origin.

\rm :\longmapsto\: y_{1} =  \sqrt{4 -  {x}^{2} }

\rm :\longmapsto\: y_{2} =  x

\rm :\longmapsto\: y_{3} =   - x

Now, point of intersection of

\rm :\longmapsto\:y =  \sqrt{4 -  {x}^{2} } \:  \: and \:  \: y = x

\rm :\longmapsto\:x =  \sqrt{4 -  {x}^{2} }

\rm :\longmapsto\: {x}^{2} = 4 -  {x}^{2}

\rm :\longmapsto\: 2{x}^{2} = 4

\rm :\longmapsto\: {x}^{2} = 2

\rm\implies \:x =  \sqrt{2}

\rm\implies \:y =  \sqrt{2}

Similarly,

The point of intersection of

\rm :\longmapsto\:y =  \sqrt{4 -  {x}^{2} } \:  \: and \:  \: y =  - x \: is \: ( -  \sqrt{2}, \sqrt{2})

So, the required area bounded by the curves is

\rm \:  =  \: 2\displaystyle\int_{0}^{ \sqrt{2} }( y_{1} -  y_{2})

\rm \:  =  \: 2\displaystyle\int_{0}^{ \sqrt{2} }(  \sqrt{4 -  {x}^{2} }  - x)

\rm \:  =  \: 2\bigg[\dfrac{x}{2} \sqrt{4 -  {x}^{2} } + \dfrac{4}{2} {sin}^{ - 1}\dfrac{x}{2}  - \dfrac{ {x}^{2} }{2} \bigg]_{0}^{ \sqrt{2} }

\rm \:  =  \: 2\bigg[\dfrac{ \sqrt{2} }{2} \sqrt{4 -  2 } + \dfrac{4}{2} {sin}^{ - 1}\dfrac{ \sqrt{2} }{2}  - \dfrac{2}{2} \bigg] - 0

\rm \:  =  \: 2\bigg[\dfrac{ \sqrt{2} }{2} \sqrt{2} + 2 {sin}^{ - 1}\dfrac{1}{ \sqrt{2} }  -1\bigg]

\rm \:  =  \: 2\bigg[1+ 2  \times \dfrac{\pi}{4}  -1\bigg]

\rm \:  =  \: 2\bigg[ \dfrac{\pi}{2} \bigg]

\rm \:  =  \: \pi \: square \: units

Attachments:
Similar questions