Math, asked by tiwarisadhna142, 5 months ago

the Area
If the of Rectangle 200 m2 and length is 20m
what is the perimeter of Rectangle​

Answers

Answered by onlinemath
1

Answer:

60m

Step-by-step explanation:

area of a rectangle= 200

l=20m

b=?

l x b = 200

20xb = 200

b=200/20=10

Perimeter = 2(l+b)

= 2(20+10)

=2(30)

60

Answered by suraj5070
133

 \sf \bf \huge {\boxed {\mathbb {QUESTION}}}

 \tt The\: Area\: If \:the \:of\: Rectangle\: 200\: {m}^{2} and\: length \:is\\\tt 20\:m\: what \:is \:the\: perimeter\: of \:Rectangle.

 \sf \bf \huge {\boxed {\mathbb {ANSWER}}}

 \sf \bf {\boxed {\mathbb {GIVEN}}}

  •  \sf \bf Area\:of \:rectangle = 200\:{m}^{2}
  •  \sf \bf Length\:of \:rectangle = 20\:m

 \sf \bf {\boxed {\mathbb {TO\:FIND}}}

  •  \sf \bf Breadth \:of \:the \:rectangle
  •  \sf \bf Perimeter \:of \:the \:rectangle

 \sf \bf {\boxed {\mathbb {SOLUTION}}}

 {\color {springgreen} \underline {\sf (i) Breadth \:of \:the \:rectangle}}

 {\boxed {\boxed {\boxed {\color {blue} {\sf \bf A=l \times b}}}}}

  •  \sf A=area\:of \:the \:rectangle
  •  \sf l=length \:of \:the \:rectangle
  •  \sf b=breadth \:of \:the \:rectangle

 {\underbrace {\overbrace {\color {orange} {\bf Substitute \:the \:values}}}}

 \sf \bf \implies 200=20\times b

 \sf \bf \implies b=\dfrac{200}{20}

 \sf \bf \implies b=\dfrac{\cancel{200}}{\cancel {20}}

 {\boxed {\boxed {\color {brown} {\sf \bf b=10\:m}}}}

{\color {magenta} {\overline {\underline {\sf\therefore Breadth \:of\:the \:rectangle \:is \:10\:m}}}}

————————————————————

 {\color {springgreen} \underline {\sf (ii) Perimeter\:of \:the \:rectangle}}

 {\boxed {\boxed {\boxed {\color {blue} {\sf \bf P=2\Big(l + b\Big)}}}}}

  •  \sf P= perimeter \:of \:the \:rectangle
  •  \sf l=length \:of \:the \:rectangle
  •  \sf b=breadth \:of \:the \:rectangle

 {\underbrace {\overbrace {\color {orange} {\bf Substitute \:the \:values}}}}

 \sf \bf \implies P=2\Big(20 + 10\Big)

 \sf \bf \implies P=2\Big(30\Big)

\implies{\boxed {\boxed {\color {aqua} {\sf \bf P=60\:m}}}}

 {\underbrace {\color {red} {\underline {\color {red} {\sf \therefore The\:perimeter \:of\:the \:rectangle \:is\:60\:m}}}}}

 \sf \bf \huge {\boxed {\mathbb {HOPE \:IT \:HELPS \:YOU}}}

__________________________________________

 \sf \bf \huge {\boxed {\mathbb {EXTRA\:INFORMATION}}}

 \bf Perimeter \:of \:rectangle =2(l+b)

 \bf Area \:of \:rectangle =lb

 \bf Diagonal \:of \:rectangle =\sqrt{{b}^{2}+{l}^{2}}

 \bf Length \:of \:rectangle =\sqrt{{d}^{2}-{b}^{2}}

 \bf Breadth \:of \:rectangle =\sqrt{{d}^{2}-{l}^{2}}

Similar questions