Math, asked by hassanabbas9133, 9 months ago

the area of a circle is 154cm. find the area of a square inscribed in the circle?​

Answers

Answered by Anonymous
5

Step-by-step explanation:

The area of a square inscribed in the circle is 98 cm².

To find :

The area of square inscribed in the circle.

Given :

If the area of a circle = 154 cm². (Given)

            Area of circle = π r²

                            154  = π r²

                               r^{2}r2  = 49

                                 r =  \sqrt{49}49

                                r = 7

Square is inscribed in the circle,

Where,        Diagonal of the square = diameter of the circle

                   Diagonal = 2 r

                                   = 2 × 7

                 Diagonal = 14

To find side of the square :

Side of the square = \frac{Diagonal}{\sqrt{2} }2Diagonal

                               = \frac{14}{\sqrt{2} }214      

                              = \frac{7 \times 2}{\sqrt{2}}27×2

Area of the square = 7\sqrt{2}2

Hence, the area of the square = side²

                                                   = 7\sqrt{2}2 × 7

                                                   = 49 × 2

                         Area of square = 98

Thus, the area of square inscribed in the circle is 98 cm².    

ur answer.....mark its brainliest answer....:)

Answered by tanmaysancheti
0

Answer:

Step-by-step explanation:

area of circle = (π)r²

154 = 22/7(r²)

154*7/22 = r²

49 = r²

√49 = r

r = 7cm

therefore,

area inscribed by square in the circle

the diagonal of square will be 14cm

therefore,

area of square or rhombus = 1/2*14*14

i.e. 14*7

therefore area of square is 98cm²

Similar questions