Math, asked by madhurianil101, 1 month ago

the area of a circle is 154cm. then the circumference of the circle is?​

Answers

Answered by ranii410
4

Answer:

Circle

CircleSolve for circumference

CircleSolve for circumferenceC≈43.99

CircleSolve for circumferenceC≈43.99A Area

CircleSolve for circumferenceC≈43.99A Area 154

CircleSolve for circumferenceC≈43.99A Area 154Using the formulas

CircleSolve for circumferenceC≈43.99A Area 154Using the formulasA=πr2

CircleSolve for circumferenceC≈43.99A Area 154Using the formulasA=πr2C=2πr

CircleSolve for circumferenceC≈43.99A Area 154Using the formulasA=πr2C=2πrSolving forC

CircleSolve for circumferenceC≈43.99A Area 154Using the formulasA=πr2C=2πrSolving forCC=2πA=2·π·154≈43.99115

Answered by Anonymous
4

\pink✏ \green{ \: Given  :- }

\pink { Area \: of \: Circle \: is \: 154 \:  {cm}^{2} }

\pink✏ \green { \: To \: Find  :-}

 \pink {Circumference \: of \: Circle}

\pink✏ \green { \: Required \: Solution:-}  \blue {Let \: the \: radius \: be \: 'r'}

 \blue✪  \: \red {Area \: of \: Circle = \pi {r}^{2} }

 \green↪\blue{154 =  \frac{22}7 \times  {r}^{2} }

 \green ↪ \blue {{r}^{2}  =  \frac{154 \times 7}{22} }

 \green↪\blue {{r}^{2}  =  \frac{1078}{22} }

  \green↪\blue{ {r}^{2}  = 49}

 \green ↪\blue {\sqrt{ {r}^{2} }  =  \sqrt{49} }

 \green↪\blue{ r = 7}

 \blue✭\pink{\: Radius =7cm}

 \pink❍ \red { \: Circumference \: of \: Circle = 2\pi r}

 \orange↪ \blue {Circumference \: of \: Circle =2 \times  \frac{22}{7}  \times 7}

\orange↪\blue {Circumference \: of \: Circle =2 \times 22}

 \green ➢  \: \red {Circumference \: of \: Circle =44cm}

 \red {Your\: question\: is\: wrong.}

 \green {✏Question- The\: area\: of\: a\: circle\: is\: 154cm². \:Then\: the\: circumference\: of\: the\: circle\: is?}

Similar questions