Math, asked by Mohini3979, 11 months ago

The area of a circle is 616 cm2.find it's circumference

Answers

Answered by aagarg2001
15

Answer:

see the attached pic for answer

hope it will help you ..

if it helps mark brainliest

Attachments:
Answered by Anonymous
33

\huge\bf\red{\underline{\underline{Given}}}\::

  • \sf\orange{Area_{\:(circle)}\:=\:616cm^{2} }

\huge\bf\red{\underline{\underline{To\:Find}}}\::

  • \sf\gray{ Circumference_{\:(circle)}}

\huge\bf\red{\underline{\underline{Solution}}}\:: \\

\hookrightarrow\:\sf\pink{Area_{\:(circle)}\:=\:\pi r^{2}}

\hookrightarrow\:\sf\purple{616cm^{2} \: =\: \dfrac{21}{7}\:\times\:r^{2}}

\hookrightarrow\:\sf\pink{r^{2}\:=\:\dfrac{616\times 7}{22} cm</p><p>^{2}}

\hookrightarrow\:\sf\purple{r\:=\:\sqrt{\dfrac{616\times 7}{22} }cm}

\hookrightarrow\:\sf\pink{r\:=\:\sqrt{2\times7}\:cm}

\hookrightarrow\:\sf\purple{r\:=\:\sqrt{2\times7\times2\times7}\:cm}

\hookrightarrow\:\sf\pink{r\:=\:\sqrt{14\:\times\:14}\:cm}

\hookrightarrow\:\sf\purple{r\:=\:14cm}

\mapsto\:\sf\blue{Circumference_{\:(circle)}\:=\:2\pi r}

\mapsto\:\sf\orange{Circumference_{\:(circle)}\:=\:2\:\times\:\dfrac{22}{7}\:\times\:14}

\mapsto\:\sf\blue{Circumference_{\:(circle)}\:=\:2\:\times\:22\:\times\:2}

\mapsto\:\underline{\boxed{\sf{\orange{Circumference_{\:(circle)}\:=\:</p><p>88cm}}}}

\Large\bf\red{\underline{\underline{Additional\: Information}}}\:: \\

\star\:\sf\underline\pink{Formula\:related\:to\:circle}

  • \sf\red{Area_{\;(cricle)} = \pi r^2}

  • \sf\orange{Area_{\;(Perimeter)} = 2 \pi r}

  • \sf\green{Area_{\;(semicricle)} = \dfrac{ \pi r^2}{2}}

  • \sf\blue{Perimeter_{\;(semi  cricle)} = \pi r + 2r}

  • \sf\purple{Area_{\;(quadrant)} = \dfrac{ \pi r^2}{4}}

  • \sf\red{Area_{\;(sector)} = \dfrac{ \theta}{360^\circ} \times \pi r^2}

  • \sf\orange{ Perimeter_{\;(sector)} = \dfrac{ \theta}{360^\circ} \times 2 \pi r + 2r}

  • \sf\green{Area_{\;(segment)} = \dfrac{ \theta}{360^\circ} \pi r^2 - \dfrac{1}{2} r^2 sin \theta}

  • \sf\blue{Perimeter_{\;(segment)} = \dfrac{\pi r \theta}{180^\circ} + 2r \dfrac{ \theta}{2}}
Similar questions