Math, asked by umasachin2011, 1 month ago

the area of a circle is A = (px² + 6xp + 9p)m². find the radius of the circle. [ hint: (a²+2ab+b²) = (a+b)²]​

Answers

Answered by unknown2429
6

Answer:

x+3

Step-by-step explanation:

Step-by-step explanation:p {x}^{2}  + 6xp + 9 {p}  \\  ={(  \sqrt{p}  \times x)}^{2}  + 2 \times( 3 \times  \sqrt{p} ) \times  \sqrt{p}  + (3 \times  \sqrt{p} )^{2}  \\  =  (\sqrt{p} x + 3 \sqrt{p} )^{2}

Step-by-step explanation:p {x}^{2}  + 6xp + 9 {p}  \\  ={(  \sqrt{p}  \times x)}^{2}  + 2 \times( 3 \times  \sqrt{p} ) \times  \sqrt{p}  + (3 \times  \sqrt{p} )^{2}  \\  =  (\sqrt{p} x + 3 \sqrt{p} )^{2} r =   \sqrt{ \frac{area}{\pi} } =  \sqrt{ \frac{ {( \sqrt{p} x + 3 \sqrt{p} ) }^{2} }{\pi}  }  \\  =  \frac{ \sqrt{p} x + 3 \sqrt{p} }{ \sqrt{\pi} }  =  \frac{ \sqrt{p} (x + 3)}{ \sqrt{\pi} }  = (x + 3) \times   \sqrt{ \frac{p}{\pi} }

Step-by-step explanation:p {x}^{2}  + 6xp + 9 {p}  \\  ={(  \sqrt{p}  \times x)}^{2}  + 2 \times( 3 \times  \sqrt{p} ) \times  \sqrt{p}  + (3 \times  \sqrt{p} )^{2}  \\  =  (\sqrt{p} x + 3 \sqrt{p} )^{2} r =   \sqrt{ \frac{area}{\pi} } =  \sqrt{ \frac{ {( \sqrt{p} x + 3 \sqrt{p} ) }^{2} }{\pi}  }  \\  =  \frac{ \sqrt{p} x + 3 \sqrt{p} }{ \sqrt{\pi} }  =  \frac{ \sqrt{p} (x + 3)}{ \sqrt{\pi} }  = (x + 3) \times   \sqrt{ \frac{p}{\pi} } well this is the final answer if p is a random variable. but if you wanted to refer to pi by p the the answer is simply x+3

Hope thus helps you. PLEASE MARK ME AS THE BRAINLIEST.

Similar questions