the area of a circle is given by expression -(πx^2 + 10π x+ 25π). find the radius of circle
Answers
Answered by
6
Here,
area= -(πx² + 10πx + 25π)
= -πx² - 10πx - 25
so,
a= -π
b= -10π
c= -25π
so,
according quadratic formula,
x= (-b ± √b²-4ac)/2a
x= -(-10π) ± √{(-10π)²-4(-π)(-25π)}/2(-π)
x= 10π ± √100π² - 100π²/-2π
x= 10π ± √0/2π
x= 10π/-2π
x= -5
here given that
area= -πx² - 10πx - 25π
=π( -x² - 10x - 25)
=π{ -(-5)² - 10(-5) - 25}
=π{ -25 + (50) - 25}
=π{-25 + 50 - 25}
=π(50-50}
=π(0)
=0
Now area = 0
so,
area of circle= πr²
so,
πr²=0
r²=0/π
r²=0
r=0
Hence, radius = 0
area= -(πx² + 10πx + 25π)
= -πx² - 10πx - 25
so,
a= -π
b= -10π
c= -25π
so,
according quadratic formula,
x= (-b ± √b²-4ac)/2a
x= -(-10π) ± √{(-10π)²-4(-π)(-25π)}/2(-π)
x= 10π ± √100π² - 100π²/-2π
x= 10π ± √0/2π
x= 10π/-2π
x= -5
here given that
area= -πx² - 10πx - 25π
=π( -x² - 10x - 25)
=π{ -(-5)² - 10(-5) - 25}
=π{ -25 + (50) - 25}
=π{-25 + 50 - 25}
=π(50-50}
=π(0)
=0
Now area = 0
so,
area of circle= πr²
so,
πr²=0
r²=0/π
r²=0
r=0
Hence, radius = 0
AditiGupta11:
thanks a lot
Answered by
0
Step-by-step explanation:
Similar questions