Math, asked by LostInJordan, 10 months ago

The area of a parallelogram ABCD in which AB = 12 cm, BC = 9 cm and diagonal AC = 15 cm is k cm2. Find the value of k-100/4

Answers

Answered by Anonymous
13

Given:-

  • ABCD is a //gm.
  • AB = 12cm
  • BC = 9cm
  • AC = 15cm
  • Area of //gm :- k cm²

To find:-

  •  \sf{k - \dfrac{100}{4}}

Solution:-

Area of ∆ =  \sf{ \dfrac{1}{2} \times b \times h}

\implies \sf{ A = \dfrac{1}{2} \times 12 \times h} ------(1)

★ Also find area of ∆ using herons formula:-

  •  \sf{ \sqrt{ s(s - a)(s - b)(s - c)}}

★ Firstly finding semiperimeter(s) = ?

  •  \sf{ \dfrac{ a + b + c}{2}}

  •  \sf{ \dfrac{ 12 + 9 + 15}{2}}

  •  \sf{ \cancel{ \dfrac{36}{2}}}

  •  \sf{ 18cm}

★ Put value of S in formula:-

  •  \sf{ \sqrt{ 18(18 - 12)(18 - 15)(18 - 9)}}

  •  \sf{ \sqrt{ 18(6)(3)(9)}}

  •  \sf{ \sqrt{3 \times 3 \times 2 \times 3 \times 2 \times 3 \times 3 \times 3}}

  •  \sf{ 3 \times 3 \times 3 \times 2}

  •  \sf{ 54 cm^2}

\implies So, area of ∆ ABC is 54cm².

Put the area in eq(1):-

\implies \sf{ 54 = \dfrac{1}{2} \times 12 \times h}

\implies \sf{ 54 = 6 \times h}

\implies \sf{ \cancel{ \dfrac{54}{6}} = h}

\implies \sf{h = 9cm}

So,

Area of //gm :- Base × Height

\implies \sf{ A = 12 \times 9}

\implies \sf{ A = 108cm^2}

Also, Area of //gm :- k

\implies \sf{ k = 108cm^2}

Therefore,

\implies \sf{ k - \dfrac{100}{4}}

Putting value of k :-

\implies \sf{ 108 -  \dfrac{100}{4}}

\implies \sf{ \dfrac{432 - 100}{4}}

\implies \sf{ \dfrac{332}{4}}

\implies \sf{83}

_______________________

Answered by Anonymous
13

\huge\purple{\underline{\underline{\pink{Ans}\red{wer:-}}}}

\sf{Value \ of \ k-\frac{100}{4} \ is \ 83.}

\sf\orange{Given:}

\sf{In \ a \ parallelogram \ ABCD,}

\sf{\implies{AB=12 \ cm,}}

\sf{\implies{BC=9 \ cm,}}

\sf{\implies{Diagonal \ AC=15 \ cm}}

\sf{\implies{Area \ of \ parallelogram \ is \ k \ cm^{2}}}

\sf\pink{To \ find:}

\sf{The \ value \ of \ k-\frac{100}{4}}

\sf\green{\underline{\underline{Solution:}}}

\sf{In, \ \triangle \ ABC,}

\sf{AB=12 \ cm,}

\sf{BC=9 \ cm,}

\sf{AC=15 \ cm.}

\sf{By \ herons \ formula}

\sf{s=\frac{a+b+c}{2}}

\sf{s=\frac{12+9+15}{2}}

\sf{s=\frac{36}{2}}

\sf{\therefore{s=18}}

\sf{Area \ of \ \triangle \ ABC=\sqrt{s(s-a)(s-b)(s-c)}}

\sf{=\sqrt{18(18-12)(18-9)(18-15)}}

\sf{=\sqrt{18\times6\times9\times3}}

\sf{=\sqrt{3\times3\times2\times3\times2\times3\times3\times3}}

\sf{=3\times3\times3\times2}

\sf{=54 \ cm^{2}}

\sf{Also \ area \ of \ \triangle \ ABC=\frac{1}{2}\times \ base\times \ height}

\sf{Now, \ let \ AB \ be \ base.}

\sf{\therefore{Area \ of \ \triangle \ ABC=\frac{1}{2}\times \ AB\times \ h}}

\sf{54=\frac{1}{2}\times12\times \ h}

\sf{h\times6=54}

\sf{h=\frac{54}{6}}

\sf{\therefore{h=9 \ cm}}

\sf{Height \ is \ 9 \ cm}

_________________________________

\sf{Area \ of \ parallelogram=Base\times \ height}

\sf{...formula}

\sf{\therefore{Area \ of \ parallelogram \ ABCD=12\times9}}

\sf{=108 \ cm^{2}}

\sf{\therefore{k=108}}

\sf{\implies{k-\frac{100}{4}=108-\frac{100}{4}}}

\sf{=108-25}

\sf{=83}

\sf\purple{\tt{\therefore{Value \ of \ k-\frac{100}{4} \ is \ 83.}}}

Similar questions