Math, asked by avika95367, 4 months ago

the area of a parallelogram and a square are the same if the perimeter of the square is 160 m and the height of the parallelogram is 20 m find the length of the corresponding base of the parallelogram

Answers

Answered by as6371815
33

Step-by-step explanation:

answer ☀️☀️☀️☀️☀️☀️☀️

Attachments:
Answered by SarcasticL0ve
68

Given:

  • \sf Area_{\;(parallelogram)} = Area_{\;(square)}
  • Perimeter of square = 160 m
  • Height of the Parallelogram = 20 m

⠀⠀

Need to find:

  • The length of the corresponding base of the parallelogram?

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━

Given that,

⠀⠀

  • Perimeter of square = 160 m

⠀⠀

\dag\;{\underline{\frak{As\;we\;know\;that,}}}\\ \\

\star\;{\boxed{\sf{\pink{Perimeter_{\;(square)} = 4 \times side}}}}\\ \\

Therefore,

⠀⠀

:\implies\sf 4 \times side = 160\\ \\

:\implies\sf side = \cancel{ \dfrac{160}{4}}\\ \\

:\implies{\underline{\boxed{\frak{\purple{side = 40\;m}}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Thus,\;side\;of\; square\;is\; \bf{40\;m}.}}}

⠀⠀

Now, Finding area of square,

⠀⠀

\star\;{\boxed{\sf{\pink{Area_{\;(square)} = side \times side}}}}\\ \\

:\implies\sf Area_{\;(square)} = 40 \times 40\\ \\

:\implies{\underline{\boxed{\frak{\purple{Area_{\;(square)} = 1600\;m^2}}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Area\;of\; square\;is\; \bf{1600\;m^2}.}}}

⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━

\underline{\bigstar\:\boldsymbol{According\:to\:the\:question\::}}\\ \\

  • \sf Area_{\;(parallelogram)} = Area_{\;(square)}

Therefore,

⠀⠀

\star\;{\boxed{\sf{\pink{Area_{\;(parallelogram)} = Base \times Height}}}}\\ \\

\sf Here \begin{cases} & \sf{Area = \bf{1600\;m^2}}  \\ & \sf{Height = \bf{20\;m}}  \end{cases}\\ \\

:\implies\sf Base \times 20 = 1600\\ \\

:\implies\sf Base = \cancel{ \dfrac{1600}{20}}\\ \\

:\implies{\underline{\boxed{\frak{\purple{Base = 80\;m}}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Length\;of\; corresponding\;base\;of\; parallelogram\;is\; \bf{80\;m}.}}}

Similar questions