The area of a parallelogram is
45 square cm and length of its
bottom side is 9 cm. What is
the distance to its opposite
side? *
Answers
Answer:
Findtheperimeterofarectanglebreath
=20cmlength=40cm
D I A G R A M :
\begin{gathered}\begin{gathered} \pink{\begin{gathered} \sf{20 \:m}\huge\boxed{ \begin{array}{cc} \: \: \: \: \: \: \\ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \ \: \: \end{array}} \\ \: \: \: \: \: \sf{40 \: m} \end{gathered}}\end{gathered}\end{gathered}
20m
40m
\large \sf \green{Given:-}Given:−
Length of Rectangle = 40 cm
Breadth of Rectangle = 20 cm
\sf \color{skyblue} \mapsto2(40 + 20) \: cm↦2(40+20)cm
\color{skyblue}{\bigstar \large\underline{\boxed{\bf\pink{Solution:-}}}}★
Solution:−
Formula :-
\dag \orange{ \boxed{\sf {Perimeter_{(Rectangle)} = 2( \ell + b)}}}†
Perimeter
(Rectangle)
=2(ℓ+b)
\frak \purple{ \underline{ \bigstar{Finding \: the \: perimeter \: of \: rectangle}}}
★Findingtheperimeterofrectangle
\sf \blue{= 2( \ell + b)}=2(ℓ+b)
\sf \color{skyblue}{ \mapsto 2( 40 + 20)}↦2(40+20)
\sf \color{gold} \mapsto2(60)↦2(60)
\sf \green{2 \times 60 = 120 \: cm}2×60=120cm
\pink{ \underline{ \boxed{ \bf{ \therefore \: The \: perimeter \: of \: rectangle = 120 \: cm}}}}
∴Theperimeterofrectangle=120cm