Math, asked by minubasak0, 1 month ago

The area of a parallelogram is 98 cm². If one altitude is half the corresponding base, then
determine the base and the altitude of the parallelogram.

Answers

Answered by 12thpáìn
6

Let

  •  \small \sf{The  \: corresponding  \: base  \: be \:  x.}
  •  \small \sf{Then \:  Altitude \:  will  \: be   \: \dfrac{x}{2}  }
  •  \small \sf{Area  \: of \:  Parallelogram \:  = 98  \: cm²}\\

We know that

\\\bf{Area  \: of \:  Parallelogram \:  =  altitude \times corresponding \: base}

  • Putting the value in Formula, we get

 \sf{~~~~~:~~\implies   98 =  x \times  \dfrac{x}{2}  }

\sf{~~~~~:~~\implies    {x}^{2}  = 98 \times 2  }

\sf{ ~~~~~:~~\implies   {x}^{2}  = 196 }

\sf{~~~~~:~~\implies   x  = \sqrt{196} }

\sf{ ~~~~~:~~\implies  x  = 14 } \\

Hance,

  •  \small \sf{The  \: corresponding  \: base  \: be \:\underline{\bf  14cm.}}
  •  \small \sf{Then \:  Altitude \:  will  \: be   \:\underline{\bf 7cm.}  }\\

Figure

  • \setlength{\unitlength}{1 cm}\begin{picture}(0,0)\thicklines\qbezier(1,1)(1,1)(6,1)\put(0.4,0.5){\bf D}\qbezier(1,1)(1,1)(1.6,4)\put(6.2,0.5){\bf C}\qbezier(1.6,4)(1.6,4)(6.6,4)\put(1,4){\bf A}\qbezier(6,1)(6,1)(6.6,4)\put(6.9,3.8){\bf B}\end{picture}
Similar questions