Math, asked by SISRAM876, 1 day ago

the area of a parallelogram on a base 56 M long is the same as that of the area of triangle with base 72 hours and height 42 M find the height of the parallelogram​

Answers

Answered by Anonymous
23

Given :

  • Area of Parallelogram = 56 m
  • Area of Parallelogram = Area of Triangle
  • Base of Triangle = 72 m
  • Height of Triangle = 42 m

 \\ \\

To Find :

  • Height of Parallelogram = ?

 \\ \qquad{\rule{200pt}{2pt}}

SolutioN :

 \dag Formula Used :

  •  {\underline{\boxed{\pmb{\sf{ Area{\small_{(Triangle)}} = \dfrac{1}{2} \times Base \times Height }}}}}

  •  {\underline{\boxed{\pmb{\sf{ Area{\small_{(Parallelogram)}} = Base \times Height }}}}}

 \\ \\

 \dag Calculating the Height :

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { Area{\small_{(Triangle)}} = Area{\small_{(Parallelogram)}} } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { \dfrac{1}{2} \times Base \times Height = Base \times Height } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { \dfrac{1}{2} \times 72 \times 42 = 56 \times Height } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { \dfrac{1}{2} \times 3024 = 56 \times Height } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { \dfrac{3024}{2} = 56 \times Height } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { \cancel\dfrac{3024}{2} = 56 \times Height } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { 1512 = 56 \times Height } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { \dfrac{1512}{56} = Height } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { \cancel\dfrac{1512}{56} = Height } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; {\underline{\boxed{\pmb{\sf { Height = 27 \; m }}}}} \; {\pink{\pmb{\bigstar}}} \\ \\ \\ \end{gathered}

 \\ \\

 \therefore \; Height of the Parallelogram is 27 m .

 \\ \qquad{\rule{200pt}{2pt}}

Answered by ADITYABHAIYT
3

_____________________

QUESTIONS:-

the area of a parallelogram on a base 56 M long is the same as that of the area of triangle with base 72 hours and height 42 M find the height of the parallelogram.

ANSWER:-

Calculating the Height:-

Area (triangle) = Area (parallelogram)

=> 1/2 x Base Height x Base x Height

=> 1/2 x 72 x 42 = 56 x Height

=> 1/2 x 3024 = 56 x Height

=> 3024/2 = 56 x Height ( 3024 and 2 are cancelled)

=> 1512 = 56 x Height

=> 1512 / 56 = Height ( 1512 and 56 are cancelled)

=> Height = 27m (ans)

_____________________

#ADITYABHAIYT

Similar questions