Math, asked by Hiteshamu, 10 months ago

the area of a quadrant of a circle whose circumference is 22 cm is

Answers

Answered by Hoyden
15

​  

Here is your answer

Attachments:
Answered by Anonymous
34

Given,

  • \sf{Circumference\:of\:the\:circle\:is\:22\:cm}

To find,

  • \sf{Area\:of\:quadrant}

Solution,

It should be noted that a quadrant of a circle is a sector which is making an angle of 90°

\sf{Let\:the\:radios\:of\:the\:circle\:be\:r}

  • As,

\large{\sf{C=2πr=22}}

\large\sf{⇒R=\frac{22}{2π}\:cm}

\large\sf{⇒ R=\frac{7}{2}\:cm}

  • So,

\bf{Area\:of\:the\:quadrant,}

\sf{=  \frac{θ}{360°} ×πr^2}

Here, θ = 90°

  • So,

\sf\large{A=\frac{90°}{360°}×πr^2\:cm^2}

\sf\large{=\frac{1}{4}×π (\frac{7}{2})^2\:cm^2}

\sf\large{=\frac{1}{4}×π(\frac{49}{4}\:cm^2}

\sf\large{=\frac{49}{16}π\:cm^2}

\sf\large{=\frac{49}{16}×\frac{22}{7}\:cm^2}

\sf\large{=\frac{77}{8}\:cm^2}

\sf\large{=9.6\:\:cm^2}

____________________________

 \large{ \underline{ \overline{ \mid{ \rm{ \red{Answer→9.6\:\:cm^2}} \mid}}}}

____________________________

Similar questions