Math, asked by kajolkumari49718, 2 months ago

The area of a quadrilateral ABCD in which AB=3cm, BC = 4 cm , CD = 4 cm , DA = 5 cm AC = 5 cm . Solve it by using herons formula​

Answers

Answered by Mahekfarheen
1

Answer:

Find the area of a quadrilateral ABCD in which AB = 3 cm, BC = 4 cm, CD = 4 cm, DA = 5 cm and AC = 5 cm. ∴ ΔABC is right angled with ∠B = 90°. = 2 x 4.6 cm2 (approx.) = 9.2 cm2 (approx.)

Answered by Ranveerx107
2

\underline{\underline{\huge{\blue{\tt{\textbf Answer :-}}}}}

Area of Quadrilateral = ar of ∆ABC + ar of ∆ADC

Area of ∆ABC

heron's formula

  = \sqrt{s(s - a)(s - b)(s - c)}  \\

{where, s is semi perimeter}

  s =  \frac{a + b + c}{2}  \\   \:  =   \frac{3 + 4 + 5}{2 }  \\  =  \frac{12}{2}  \\  = 6

area of ∆ABC

 =  \sqrt{s(s - a)(s - b)(s - c)}  \\  =  \sqrt{6(6 - 3)(6 - 4)(6 - 5)}  \\  =  \sqrt{6 \times 3 \times 2 \times 1 }  \:  {cm}^{2}  \\  =  \sqrt{6 \times 6} \:   {cm}^{2}  \\  = 6 {cm}^{2}

Area of∆ADC

  = \sqrt{s(s - a)(s - b)(s - c)}  \\ \: s  =  \frac{a + b + c}{2}  \\  \frac{5 + 4 + 5}{2}  =  \frac{14}{2}  = 7cm \\  \\ ar \: of \: triangle \:   \\  =  \sqrt{7(7 - 5)(7 - 4)(7 - 5)}  \\  =  \sqrt{7 \times 2 \times 3 \times 2}  \\  =  \sqrt{2 \times 2 \times 7 \times 3}  \\  =  2\sqrt{21} \\  = 2 \times 4.58 = 9.16 {cm}^{2}

──────────────

Area of Quadrilateral = ar of ∆ABC + ar of ∆ADC

 = 6 + 9.16 \\  = 15.16 {cm}^{2}  \\  = 15.2 {cm}^{2}  \: (approx.)

  • So the Area of Quadrilateral ABCD = 15.2cm .sq

───────────────────────────────

Similar questions