Math, asked by chauhanji2032, 5 hours ago

The area of a quadrilateral is 116.25 m. find the length of the diagonal, if the perpendiculars from two vertices to the diagnol are 8.7 m and 6.3 m.​

Answers

Answered by Anonymous
72

Answer:

Given :

  • ➤ The area of a quadrilateral is 116.25 m.
  • ➤ The perpendiculars from two vertices to the diagnol are 8.7 m and 6.3 m.

\begin{gathered}\end{gathered}

To Find :

  • ➤ The lenght of diagonal.

\begin{gathered}\end{gathered}

Using Formula :

{\longrightarrow{\small{\underline{\boxed{\pmb{\sf{Area_{(Quadrilateral)}=  \dfrac{1}{2}  \times  diagonal \times  \big( Some \:  of \:  perpendiculars \:  \big)}}}}}}}

\begin{gathered}\end{gathered}

Solution :

♦️ Finding the diognal of quadrilateral by substituting the values in the formula :-

{\dashrightarrow{\small{\sf{Area_{(Quadrilateral)}=  \dfrac{1}{2}  \times  diagonal \times  \bigg( Some \: of \:  perpendiculars \:  \bigg)}}}}

{\dashrightarrow{\small{\sf{116.25 \:  {m}^{2} =  \dfrac{1}{2}  \times  diagonal \times  \bigg(8.7 + 6.3\bigg)}}}}

{\dashrightarrow{\small{\sf{116.25 \:  {m}^{2} =  \dfrac{1}{2}  \times  diagonal \times  \bigg(15\bigg)}}}}

{\dashrightarrow{\small{\sf{\dfrac{116.25}{15} =  \dfrac{1}{2}  \times  diagonal}}}}

{\dashrightarrow{\small{\sf{\cancel{\dfrac{116.25}{15}} =  \dfrac{1}{2}  \times  diagonal}}}}

{\dashrightarrow{\small{\sf{7.75 \: m =  \dfrac{1}{2}  \times  diagonal}}}}

{\dashrightarrow{\small{\sf{Diagonal = 7.75 \times 2}}}}

{\dashrightarrow{\small{\sf{Diagonal = 15.5 \: m}}}}

{\dashrightarrow{\small{\underline{\boxed{\sf{Diognal = 15.5 \: m}}}}}}

∴ The diagonal of quadrilateral is 15.5 m.

\begin{gathered}\end{gathered}

Verification :

♦️ Checking our answer :-

{\dashrightarrow{\small{\sf{Area_{(Quadrilateral)}=  \dfrac{1}{2}  \times  diagonal \times  \bigg( Some \: of \:  perpendiculars \:  \bigg)}}}}

{\dashrightarrow{\small{\sf{116.25 \:  {m}^{2} =  \dfrac{1}{2}  \times  15.5 \times  \bigg(8.7 + 6.3\bigg)}}}}

{\dashrightarrow{\small{\sf{116.25 \:  {m}^{2} =  \dfrac{1}{2}  \times  15.5 \times  \bigg(15 \bigg)}}}}

{\dashrightarrow{\small{\sf{116.25 \:  {m}^{2} =  \dfrac{1}{2}  \times  15.5 \times  15 }}}}

{\dashrightarrow{\small{\sf{116.25 \:  {m}^{2} =  \dfrac{1}{2}  \times 232.5 \:  {m}^{2} }}}}

{\dashrightarrow{\small{\sf{116.25 \:  {m}^{2} =  \dfrac{1 \times 232.5}{2} \:  {m}^{2} }}}}

{\dashrightarrow{\small{\sf{116.25 \:  {m}^{2} =  \dfrac{232.5}{2} \:  {m}^{2} }}}}

{\dashrightarrow{\small{\sf{116.25 \:  {m}^{2} =   \cancel{\dfrac{232.5}{2}}}}}}

{\dashrightarrow{\small{\sf{116.25 \:  {m}^{2} =   116.25 \:  {m}^{2} }}}}

\dashrightarrow{\underline{\boxed{\sf{LHS = RHS}}}}

∴ Hence Verified!

\begin{gathered}\end{gathered}

Learn More :

\boxed{\begin {minipage}{9cm}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {minipage}}

{\underline{\overline{\rule{200pt}{2pt}}}}

Similar questions