The area of a quadrilateral is 120 cm and the diagonal is 20 cm. If the length of perpendicular from one vertex 7 cm
Find the length of a perpendicular from the other vertex
Answers
Step-by-step explanation:
Given
Area = 120 cm²
BD = 20 cm
CN = 7 cm
Area of the field = Sum of area of the 4 triangles
i.e. ΔAMD + ΔAMB + ΔCNB + ΔCND
⇒ 120 = (\frac{1}{2}
2
1
x DM x AM) + (\frac{1}{2}
2
1
x BM x AM) + (\frac{1}{2}
2
1
x BN x CN) + (\frac{1}{2}
2
1
x DN x CN)
⇒ 120 = (\frac{1}{2}
2
1
x DM x AM) + (\frac{1}{2}
2
1
x BM x AM) + (\frac{1}{2}
2
1
x BN x 7) + (\frac{1}{2}
2
1
x DN x 7)
Replacing
BM = BD - DM = 20 - DM
and
DN = DB - NB = 20 - NB
⇒ 120 = (\frac{1}{2}
2
1
x DM x AM) + (\frac{1}{2}
2
1
x (20 - DM) x AM) + (\frac{1}{2}
2
1
x BN x 7) + (\frac{1}{2}
2
1
x (20 - NB) x 7)
⇒ 120 = (\fr
2
1
x DM x AM) + 10 AM - (\frac{1}{2}
2
1
x DM x AM) + (\frac{7}{2}
2
7
BN) + 70 - (\frac{7}{2}
2
7
BN)
⇒ 120 = 10 AM + 70
⇒ 50 = 10 AM
⇒ AM = 5