Social Sciences, asked by Mrwinner2, 5 months ago

The area of a rectangle and square are same. If the side of a square is 80 m and length of rectangular park is 200 m. Find breadth and perimeter of the rectangle.​

Answers

Answered by aadityatiwari8
1

Answer:

The side of the square park =60m

The length of the rectangular park=90m

According to the question,

Area of square park=Area of rectangular park

⇒ side×side=length×breadth

⇒60×60=90×breadth

⇒ breadth=

90

60×60

=40m

Thus, the breadth of the rectangular park is 40m.

Answered by XxmiragexX
50

Given :

  • Area of Rectangle and square are same .
  • Side of square is 80 m and length of rectangle is 200 m.

To Find :

  • Breadth and Perimeter of Rectangle .

Solution :

Firstly we will find the Area of Square :

Using Formula :

\tt\boxed{Area\:of\:Square=Side\times{Side}}

Putting Values :

\longmapsto\tt{80\times{80}}

\longmapsto\tt\bf{6400\:{m}^{2}}

Now ,

As Given that Area of Square is equal to the area of Rectangle . So ,

\longmapsto\tt{Length=200\:m}

Using Formula :

\longmapsto\tt\boxed{Area\:of\:Rectangle=l\times{b}}

Putting Values :

\longmapsto\tt{6400=200\times{b}}

\longmapsto\tt{\cancel\dfrac{6400}{200}=b}

\longmapsto\tt\bf{32\:m=b}

So , The Breadth of Rectangle is 32 m

Now ,

\longmapsto\tt{Length=200\:m}  \\ \longmapsto\tt{Breadth=32\:m}

Using Formula :

\tt\boxed{Perimeter\:of\:Rectangle=2(l+b)}

Putting Values :

\longmapsto\tt{2(200+32)} \\ \longmapsto\tt{2(232)} \\ \longmapsto\tt\bf{464\:m}

So , The Perimeter of Rectangle is 464 m

Similar questions