The area of a rectangle gets reduced by 80 sq units if its length is reduced by 5 units and the breadth
is increased by 2 units. If we increase the length by 10 units and decrease the breadth by 5 units, the
area is increased by 50 sq units. Find the length and breadth of the rectangle.
Answers
Answer:
Let the length and breadth of the rectangle be a,b units respectively.
Then the area will be ab square units.
Now if the length of the rectangle is reduced by 5 units and breadth is increased by 2 units then new length and breadth will be (a−5) units and (b+2) units.
Then new area will be (a−5)(b+2).
Then according to the problem,
(a−5)(b+2)−ab=−80
or, 2a−5b=−70.......(1).
Now if length of the rectangle is increased by 10 units and breadth is decreased by 5 units then new length and breadth will be (a+10) units and (b−5) units.
Then new area will be (a+10)(b−5).
Then according to the problem,
(a+10)(b−5)−ab=50
or, 10b−5a=100
or, 2b−a=20
or, 4b−2a=40......(2).
Now adding (1) and (2) we get
−b=−30
or, b=30.
Putting the value of b in (1) we get, a=40.
Now a+b=40+30=70.
Step-by-step explanation:
This is your ANSWER
HOPE it will help you
please mark me as brainilist (help me to promote me to expert)