Math, asked by itzNarUto, 1 year ago

The area of a Rectangle is (12m² - 17m - 5) cm² and, Length of the Rectangle is given (4m + 1) cm. Find the Breadth and Perimeter of the Rectangle.

Please Answer this Question.​

Answers

Answered by Anonymous
158

AnswEr :

  • Area = (12m² - 17m - 5) cm²
  • Length = (4m + 1) cm

Refrence of Image is in the Diagram :

\setlength{\unitlength}{1.5cm}\begin{picture}(8,2)\thicklines\put(7.7,3){\large{A}}\put(7.3,2){\mathsf{\large{? cm}}}\put(7.7,1){\large{B}}\put(8.7,0.7){\matsf{\large{(4m + 1) cm}}}\put(11.1,1){\large{C}}\put(8,1){\line(1,0){3}}\put(8,1){\line(0,2){2}}\put(11,1){\line(0,3){2}}\put(8,3){\line(3,0){3}}\put(11.1,3){\large{D}}\end{picture}

\rule{150}{2}

According to the Question Now :

\longrightarrow\texttt{Area of Rectangle = Length$\times$Breadth}\\\\\\\longrightarrow\tt (12m^2 -17m - 5) \:cm^2= (4m +1) \:cm  \times Breadth\\\\\\\longrightarrow \tt Breadth = \dfrac{(12m^2 -17m - 5) \:cm^2}{(4m +1) \:cm}\\\\\\\longrightarrow\blue{\tt Breadth = (3m-5) \:cm}

\boxed{\begin{minipage}{6.4 cm}\quad \begin{array}{m{3.5em}cccc}&&\sf3m& \sf-5&\\\cline{1-6}\multicolumn{2}{l}{\sf4m+1\big)}&\sf12m^2&\sf-17m&\sf-5\\&& \sf-(12m^2&\sf+3m)&&\\\cline{3-4}&&&\sf-20m&\sf-5&\\&&&\sf-(-20m&\sf-5)&\\\cline{4-5}&&&\sf0&\sf0&\\\end{array}\end{minipage}}

\therefore\:\underline{\textsf{Breadth of the Rectangle is \textbf{(3m - 5) cm}}}

\rule{200}{2}

P E R I M E T E R :

:\implies\tt Perimeter = 2(Length + Breadth)\\\\\\:\implies\tt Perimeter = 2[(4m + 1) + (3m - 5)]\\\\\\:\implies\tt Perimeter = 2[4m + 3m + 1 - 5]\\\\\\:\implies\tt Perimeter = 2[7m - 4]\\\\\\:\implies\boxed{\green{\tt Perimeter = (14m - 8) \:cm}}

\therefore\:\underline{\textsf{Perimeter of the Rectangle is \textbf{(14m - 8) cm}}}

Answered by Anonymous
27

\huge{\underline{\underline{\red{\mathfrak{AnSwEr :}}}}}

\small{\underline{\blue{\sf{Given :}}}}

  • Area of rectangle is (12 - 17 m -5)cm²
  • Length is 4m + 1

\rule{200}{1}

\small{\underline{\green{\sf{Solution :}}}}

As we know that :

\large{\boxed{\sf{Area \: of \: Rectangle \: = \: Length \: \times \: Breadth}}} \\ \\ \implies {\sf{Breadth \: = \: \dfrac{Area}{Length}}} \\ \\ \implies {\sf{Breadth \: = \: \dfrac{12m^2 \: - \: 17m \: - \: 5}{4m \: + \: 1}}}

See attached Picture for value of Breadth

\large{\boxed{\sf{Breadth \: = \: (3m \: - \: 5) \: cm}}}

Now,

\rule{200}{1}

\large \star {\boxed{\sf{Perimeter \: = \: 2( Length \: + \: Breadth)}}} \\ \\ \implies {\sf{Perimeter \: = \: 2 \big[ \big(4m \:  + \: 1 \big) \: + \: \big( 3m \: - \: 5 \big) \big] }} \\ \\ \implies {\sf{Perimeter \: = \: 2 \big( 4m \: + \: 1 \: + \: 3m \: - \: 5 \big)}} \\ \\ \implies {\sf{Perimeter \: = \: 2(7m \: - \: 4)}} \\ \\ \implies {\sf{Perimeter \: = \: 14m \: - \: 8}}

\large {\boxed{\sf{Perimeter \: = \: (14m \: - \: 8)cm}}}

Attachments:
Similar questions