Math, asked by arzookhoja96, 9 days ago

The area of a rectangle is (12x⁴-8x³-4x²) cm². Its width is
(3x+1) cm. What is the length of the rectangle?​

Answers

Answered by bagkakali
0

Answer:

area=(12x^4-8x^3-4x^2)cm^2

=4x^2(3x^2-2x-1) cm^2

=4x^2(3x^2-3x+x-1) cm^2

=4x^2{3x(x-1)+1(x-1)}cm^2

=4x^2(x-1)(3x+1) cm^2

width=(3x+1) cm

length=4x^2(x-1) cm

length of the rectangle is 4x^2(x-1) cm

Answered by mahakulkarpooja615
0

Answer:

Length of rectangle is 4x^{2} (x-1) cm.  

Step-by-step explanation:

Given : Area of a rectangle = (12x^{4}-8x^{3}  -4x^{2} ) cm²

           Width of rectangle = (3x+1) cm

To find : What is the length of the rectangle?​

Solution :

  • It is given that the area of a rectangle = (12x^{4}-8x^{3}  -4x^{2} ) cm²

           Width of rectangle = (3x+1) cm

  • We have to find the area of a rectangle.
  • Rectangle has a four sides perpendicular to each other and its opposite sides are equal.
  • The formula for area of a rectangle is given by,

                  Area of rectangle = Length*Width

                            (12x^{4}-8x^{3}  -4x^{2} )  = Length*(3x+1)

                              ∴ Length = \frac{12x^{4}-8x^{3} -4x^{2}  }{3x+1}

                                            = \frac{4x^{2} (3x^{2} -2x+1)}{3x+1}

                                            = \frac{4x^{2} (3x^{2} -3x+x-1)}{3x+1}

                                            = \frac{4x^{2} [3x(x-1)+1(x-1)]}{3x+1}

                                            = \frac{4x^{2} (3x+1)(x-1)}{3x+1}

                                            = 4x^{2} (x-1)

  • ∴ Length of rectangle is 4x^{2} (x-1) cm.  
Similar questions