The area of a rectangle is 300 cm² and its length : breadth = 4:3. Find (i) its perimeter, a
(ii) the length of its diagonal.
Answers
Answer:
Step-by-step explanation:
Answer:
(i). The perimeter of rectangle is 70 cm
(ii). The length of the diagonal is 25 cm
Step-by-step explanation:
Let,
The length of rectangle = 4x
The breadth of rectangle = 3x
The area of a rectangle = 300 cm²
The area of a rectangle = length × breadth
⇒ 4x × 3x = 300
⇒ 12x² = 300
⇒ x² = 300 / 12
⇒ x² = 25
⇒
⇒ x = 5
★Value of 4x:
⇒ 4 (5)
⇒ 4 × 5
⇒ 20
★ Value of 3x:
⇒ 3 (5)
⇒ 3 × 5
⇒ 15
Therefore,
The length of rectangle = 20 cm
The breadth of rectangle = 15 cm
__________________________
(i). Find the perimeter:
Perimeter of rectangle = 2 (length +
breadth)
So,
⇒ 2 (20 + 15)
⇒ 2 (35)
⇒ 2 × 35
⇒ 70
Perimeter of rectangle is 70 cm
___________________________
(ii). Find the length of its diagonal:
By Pythagoras Theorem,
⇒ (Hypotenuse)² = (Base)² + (Height)²
⇒ (Hypotenuse)² = (20)² + (15)²
⇒ (Hypotenuse)² = 400 + 225
⇒ (Hypotenuse)² = 625
⇒
⇒ Hypotenuse = 25
Hence,
The length of its diagonal = 25 cm
Therefore,
(i). The perimeter of rectangle is 70 cm
(ii). The length of the diagonal is 25 cm