Math, asked by kavitajain5266, 5 months ago

the area of a rectangle is 650 cm square and breadth is 13 find its length and perimeter​

Answers

Answered by TheEternity
12

Answer:

  • Length of the rectangle = 50 cm
  • Perimeter = 126 cm

Step-by-step explanation:

GIVEN :-

  • Area of the rectangle =  {650 \: cm}^{2}
  • Breadth of the rectangle = 13 \: cm

TO FIND :-

  • Length of the rectangle
  • Perimeter of the rectangle

FORMULA USED :-

  • Area of rectangle = Length X Breadth
  • Perimeter of rectangle = 2(Length + Breadth)

SOLUTION :-

  • For length of the rectangle :-

Area  \: of \:  rectangle = Length  \times  Breadth   \\ \\ => \: 650 = length  \times 13  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\ => \: length =  \frac{650}{13}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\ => \: 50cm \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\

  • For perimeter of the rectangle :-

Perimeter \:  of  \: rectangle = 2(Length \times  Breadth) \\  \\ =>\: 2(50 + 13)  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \: \: \\ => \: 2 \times 63  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\ => \: 126 \: cm \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:   \\

So, length of the rectangle is 50 cm and perimeter is 126 cm.

FORMULAS :-

  • Area  \: of  \: rectangle = l \times b
  •  Perimeter \: of \: rectangle = 2(l + b)
  • Diagonal  \: of  \: rectangle  =  \sqrt{ {l}^{2} +  {b}^{2}  }
  • Area \:  of  \: square  =  {a}^{2}
  • Perimeter \:  of \:  square  = 4a
  • Diagonal of square  =  \sqrt{2} a
  • Side  \: of \:  square = \frac{p}{4}

Here,

  • l = length
  • b = bredth
  • p = perimeter
Attachments:
Answered by IIMidnightHunterII
12

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(5,0){2}{\line(0,1){3}}\multiput(0,0)(0,3){2}{\line(1,0){5}}\put(0.03,0.02){\framebox(0.25,0.25)}\put(0.03,2.75){\framebox(0.25,0.25)}\put(4.74,2.75){\framebox(0.25,0.25)}\put(4.74,0.02){\framebox(0.25,0.25)}\multiput(2.1,-0.7)(0,4.2){2}{\sf\large 50 cm}\multiput(-1.4,1.4)(6.8,0){2}{\sf\large 13 cm}\put(-0.5,-0.4){\bf A}\put(-0.5,3.2){\bf D}\put(5.3,-0.4){\bf B}\put(5.3,3.2){\bf C}\end{picture}

\LARGE\textbf{\underline{\underline{Answer  :- }}}

\large\textsf{↣ Length of the rectangle = 50 cm}

\large\textsf{↣ Perimeter of the rectangle = 126 cm}

\LARGE\textbf{\underline{\underline{Given :- }}}

\large\textsf{⇝ Area of the rectangle = 650 cm²}

\large\textsf{⇝ Breadth of the rectangle = 13 cm}

\LARGE\textbf{\underline{\underline{To find :- }}}

\large\textsf{↣ Length of the rectangle = ?}

\large\textsf{↣ Perimeter of the rectangle = ?}

\LARGE\textbf{\underline{\underline{Formula :- }}}

\large\boxed{\textsf\textcolor{purple}{༒ Perimeter of the rectangle = 2 ( l + b )}}

\large\boxed{\textsf\textcolor{purple}{༒ Area of the rectangle = l × b }}

\LARGE\textbf{\underline{\underline{How to solve :- }}}

  • First using the formula of ' Area of the rectangle ' we have the find the length of the rectangle.

  • Then once we find the length of the rectangle we can easily find the ' Perimeter of the rectangle' .

\LARGE\textbf{\underline{\underline{Solution :- }}}

  • ❶ Finding the length of the rectangle with the help of the formula of the area of the rectangle .

  • Area of the rectangle = 650 cm²

  • Breadth of the rectangle ( b ) = 13 cm .

  • Length of the rectangle ( l ) = ?

\large\textsf{⟾ 650 = 13 × l }

\large\textsf{⟾ $ \cfrac{650}{13} = l$}

\large\textsf{⟾ $\cancel\cfrac{650}{13} = l $}

\large\textsf{⟾ 50 = l }

\large\boxed{\therefore\textsf\textcolor{magenta}{Length of the rectangle = 50 cm}}

  • ❷ Calculating the perimeter of the rectangle with the help of the ' length of the rectangle ' calculated above .

  • Length of the rectangle = 50 cm

  • Breadth of the rectangle = 13 cm .

  • Perimeter of the rectangle = ?

\large\textsf{⟾ Perimeter = 2 ( 50 + 13 ) }

\large\textsf{⟾ Perimeter = 2 ( 63 ) }

\large\textsf{⟾ Perimeter = 126 cm}

\large\boxed{\therefore\textsf\textcolor{magenta}{Perimeter of the rectangle = 126 cm .}}

\LARGE\textbf{\underline{\underline{* Note   :- }}}

⇝ I have drawn a figure and it is visible only from the web version.....so see the answer from the web version.....

\LARGE\textbf{\underline{\underline{More Formulas :-}}}

\large\boxed{\textbf\textcolor{green}{↦ Area of a rectangle = l × b .}}

\large\boxed{\textbf\textcolor{green}{↦ Perimeter of the rectangle = 2 ( l + b ) .}}

\large\boxed{\textbf\textcolor{green}{↦ Diagonal of the rectangle = $ \sqrt{ l^{2} + b^{2}}$}}

\large\boxed{\textbf\textcolor{red}{↦ Area of the square = Side² .}}

\large\boxed{\textbf\textcolor{red}{↦ Perimeter of the rectangle = 4 × Side .}}

\large\boxed{\textbf\textcolor{red}{↦ Diagonal of the square = $ \sqrt{2 × Side}$}}

HOPE IT HELPS YOU

Similar questions