Math, asked by mukulbalmikibarakar, 6 months ago

The area of a rectangle is 6x² - 4xy - 10y² square unit and length is 2x + 2y unit. Find its breadth.​

Answers

Answered by tejupuram339
2

Step-by-step explanation:

Area of a rectangle

= 6x2 – 4xy – 10y2 sq. units

Length = 2x + 2y units

∴ Breadth = Area/Length

= (6x2 – 4xy – 10y2)/(2x + 2y)

= 3x + 5y units

Hence, breadth = 3x – 5y units

Answered by StylusMrVirus
66

Given :-

  • Area of rectangle = 6x²-4xy-10y²

  • Length of rectangle = 2x+2y

To Find :-

  • Breadth of the rectangle

Formulae Used :-

   \large\pink{ \sf{area \: of \: rectangle = length \times breadth}}

Solution :-

 \ \: { \sf{area \: of \: rectangle = (2x + 2y)(breadth)}} \\  \\  \ \: { \sf{breadth \:  =  \frac{6 {x}^{2} - 4xy - 10 {y}^{2}  }{2x + 2y} }} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \ \: { \sf{breadth  =  \frac{(2x + 2y)(3x - 5y)}{2x + 2y} }}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \huge\fbox\red { \sf{breadth \:  =  \: 3x - 5y}}

Similar questions