Math, asked by 106776, 4 months ago

The area of a rectangle is 72 square metres. The length of the rectangle is twice the width. Find the width of the rectangle

Answers

Answered by thakursinghrawat05
1

Step-by-step explanation:

let the length and breadth be 2x and x

2x + x - 3x

3x = 72 sq. m.

x = 72/3

x = 24

then, 2x = 2*24= 48

x=24

length =48

Breadth = 24

Answered by DüllStâr
42

Given:

 \\

  • Area of a rectangle = 72m²

 \\

  • Length of rectangle is twice the width

 \\

To find:

 \\

  • width of rectangle

 \\

Let:

 \\

  • width of rectangle be x

 \\

  • Length of rectangle be 2x

 \\

Solution:

 \\

 \bigstar \underline{\boldsymbol{According \: to \: question: }}

 \\

 \dashrightarrow \:  \sf{}Area \: of \: rectangle = length \times breadth \\  \\  \\  \dashrightarrow \sf72 = 2x \times x \\  \\  \\ \dashrightarrow \sf72 = 2 {x}^{2}  \\  \\  \\ \dashrightarrow \sf2 {x}^{2}  = 72 \\  \\  \\ \dashrightarrow \sf {x}^{2}  =  \dfrac{72}{2}  \\  \\  \\ \dashrightarrow \sf {x}^{2}  =  \dfrac{36 \times 2}{2}  \\  \\  \\ \dashrightarrow \sf {x}^{2}  =  \dfrac{36 \times \cancel2}{ \cancel2}  \\  \\  \\ \dashrightarrow \sf {x}^{2}  =  \dfrac{36 \times 1}{1}  \\ \\   \\ \dashrightarrow \sf {x}^{2}  = 36 \times 1 \\  \\  \\ \dashrightarrow \sf {x}^{2}  = 36 \\  \\  \\\dashrightarrow \sf {x} =  \sqrt{36}  \\  \\  \\ \dashrightarrow \sf{}x =  \sqrt{3 \times 3 \times 2 \times 2}  \\  \\  \\ \dashrightarrow \sf{}x =  \sqrt{ \underbrace{3 \times 3 }\times  \underbrace{2 \times 2}} \\  \\  \\ \dashrightarrow \sf{}x =3 \times 2 \\  \\  \\ \dashrightarrow \underline{ \boxed{ \frak{x = 6 \: m}}}

 \\  \\  \\

 \sf{}Verification

 \\  \\  \\

\dashrightarrow \sf72 = 2x \times x \\  \\  \\ \dashrightarrow \sf72 = 2(6) \times (6) \\  \\  \\ \dashrightarrow \sf72 = 12 \times 6 \\  \\  \\ \dashrightarrow \sf  \underline{\boxed{ \frak{72 = 72}}} \\  \\  \\  \bf \dag{}LHS=RHS \dag \\  \\  \bf{}Hence \: verfied

 \\  \\

 \therefore \underline{ \sf{width \: of \: rectangle =  \textsf{ \textbf{6m}}}}

Similar questions