Math, asked by tiwariabhimanyu88, 5 months ago

The area of a rectangle is (x² + 3x -10) square units . if its length is (x-2)units then the breadth is ?​

Answers

Answered by surajbera
0

Answer:

b (breadth = 3x - 10)

Step-by-step explanation:

area of rectangle = length × breadth

x2 + 3x -10= x-2 × b

x2 + 3x - 10= x2 × b

x2 - x2 + 3x -10 = b

3x - 10 = b

Answered by TheWonderWall
5

\large\sf\underline{↬Question}

The area of a rectangle is (x² + 3x -10) square units . if its length is (x-2)units then the breadth is ?

\large\fbox\red{Answer}

\sf\:✰\:Given\:

  • \sf\:Area\:of\:rectangle\:=x^{2}+3x-10\:sq.units

  • \sf\:length\:=x-2\:units

\sf\:✰\:Solution\:

We know,

\boxed{\red{Area\: of\:rectangle\:= l\times b}}

Applying this :

\sf\:Area\:of\:rectangle\:=x^{2}+3x-10\:

\sf\:➪ \:l \times b = x^{2}+3x-10\:

\sf\: ➪ \:(x-2) \times b = x^{2}+3x-10\:

\sf\:➪ \:(x-2) \times b = x^{2} + (5-2)x-10\:

\sf\:➪\:(x-2)\times b = x^{2}+5x-2x-10\:

\sf\:➪\:(x-2) \times b=x(x+5) -2(x+5) \:

\sf\:➪\:(x-2) \times b=(x+5) (x-2) \:

\sf\:➪\:b=\frac{(x+5) (x-2) }{(x-2) }\:

\sf\:➪\:b=(x+5) \:units\:

☑ So breadth = ( x + 5 ) units.

Thnku ❣

Similar questions