the area of a rectangular carpet is 120 metre square and its perimeter is 46 metre the length of its diagonal is
Answers
Answer:
Length of Diagonal=17cm
Step-by-step explanation:
lb =area
120=lb
b=120/l
2(l+b)=46=Perimeter
l+b=23
l+120/l=23
+120=23l
-23l+120=0
-15l-8l+120=0
l(l-15)-8(l-15)=0
(l-15)(l-8)=0
Hence length is 15m and breadth is 8m
By pythogoras theorum,
=+
=+
=225+64
=289
Taking root,
Diagonal=±17cm
Diagonal=17cm(Measurements cannot be negative)
Length of Diagonal=17cm
Hope it helps...
Answer:
The length of the diagonal is 17 m.
Step-by-step explanation:
Given :
Area = 120 m²
Perimeter = 46 m
To find :
Length of the Diagonal
Solution :
Let the -
- Length as l
- Breadth as b
★ Area = Length × Breadth
⇒ l × b = 120
⇒ lb = 120
⇒ b = 120/l
★ Perimeter = 2(Length + Breadth)
⇒ 2(l + b) = 46
⇒ l + b = 46/2
⇒ l + 120/l = 23
⇒ l² + 120 = 23l
⇒ l² - 23l + 120=0
⇒ l² - 15l - 8l + 120 = 0
⇒ (l - 15) - 8(l - 15) = 0
⇒ (l - 15)(l - 8) = 0
Length is 15m
Breadth is 8m
★ Diagonal -
By Pythogoras theorum,
(Hypotenuse)² = (Base)² + (Height)²
⇒ (Hypotenuse)² = (15)² + (8)²
⇒ (Hypotenuse)² = 225 + 64
⇒ (Hypotenuse)² = 289
⇒ Hypotenuse =
⇒ Hypotenuse = 17 m
Diagonal = 17 m.
Therefore, the length of the diagonal is 17 m.