Math, asked by ayaansinha1209, 1 month ago

The area of a rectangular field is 286 3/4 sq m. If the length of the field is 18 1/2m, find the breadth of the field.

Answers

Answered by SachinGupta01
7

 \bf \: \underline{ Given} :

 \sf \: The \:  area  \: of  \: a \:  rectangular \:  field \:  is \:  286  \:  \dfrac{3}{4} \:m ^{2}

 \sf \: The  \: length \:  of \:  the \:  field = 18   \: \dfrac{1}{2} \:  m

 \bf \:  \underline{To  \: find} :

 \sf \: We \:  have \:  to \:  find  \: the \:  breadth \:  of  \: that \:  field.

 \sf \: As \: we \: know \: that :

 \sf \boxed{ \pink{ \sf \: \:Area\:of\:Rectangle=l\times{b}}}

 \sf \: Where,

 \bull \longrightarrow \:  \sf \: L = Length

 \bull  \longrightarrow \:  \sf \: B = Breadth

 \sf \: Let \:  the \:  Breadth  \: of \:  the  \: rectangular \:  field  \: be  \: x.

 \sf \: Putting  \: the  \: values,

 \sf \:\implies \:286  \:  \dfrac{3}{4}=18   \: \dfrac{1}{2}\times{x}

 \sf \:  Convert \: 286  \:  \dfrac{3}{4} \: and \:  18   \: \dfrac{1}{2}\:  \: into \:improper \: fraction.

 \sf \:\implies \dfrac{1147}{4} =\dfrac{37}{2}\times{x}

 \sf \: \implies \: 286.75 =   18.5\times{x}

 \sf \: \implies \: x =  \dfrac{286.75 }{18.5}

 \sf \: \implies \: x =  15.5 \: or  \: 15  \:  \dfrac{1}{2}

 \underline{ \boxed{ \pink{ \sf \: So, \:  The \:  breadth \:  of \:  the \:  rectangular \:  field \:  is \:  15  \:  \dfrac{1}{2}  \: m}}}

______________________________________

\bf \underline{\:Related \:  formulas} :

\sf \: 1. \: Area of Rectangle = l × b

 \sf \: 2. \: Perimeter \:  of \:  Rectangle  = 2 \:  (l + b)

 \sf \: 3. \:  Area  \: of  \: Square = Side × Side

\sf \: 4. \: Perimeter  \: of \:  Square = 4 × Side

\sf 5. \: Diagonal \:  of \:  Rectangle = \sqrt{l ^{2}  + b^{2}}

Similar questions