The area of a rectangular lot is (12x² + 17x – 40) m². If the width is (4x – 5) m, find the perimeter of the lot.
Answers
Answer:
perimeter of plot =12x² + 17x – 40) m²
width = (4x – 5) m
let length = x
so , 2(l + b) = 12x² + 17x – 40) m²
2 (x + {4x -5}m ) = 12x² + 17x – 40) m²
5x - 5 m = 12x² + 17x – 40) m²/2 =
Perimeter of the rectangle lot = (14x+6) m
Given:
The area of a rectangular lot is (12x² + 17x – 40) m²
And the width of the lot = (4x – 5) m
To find:
Perimeter of the lot
Solution:
Given area of a rectangular = (12x² + 17x – 40) m²
factorize the (12x² + 17x – 40)
⇒ 12x² + 17x - 40
⇒ 12x² -15x +32x - 40
⇒ 3x(4x -5) + 8(4x -5)
⇒ (4x -5) (3x+8)
Given that area of plot = (12x² + 17x – 40) m²
As we know area of rectangle = length × width
⇒ length × width = (12x² + 17x – 40)
From above data
⇒ length × (4x – 5) = (4x -5) (3x+8)
⇒ length of the plot = (3x+8)
Perimeter of rectangle = 2(length + breadth)
= 2(3x+8 + 4x – 5)
= 2(7x +3) =14x +6
Perimeter of the rectangle lot = (14x+6) m
#SPJ2