Math, asked by shuklatwisha567, 1 month ago

The area of a rectangular park is the same as that of a square park. If the side of the square park is 60 m and the length of the rectangular park is 120 m find the breadth of the rectangular park.

Let *CopyThat* answer this question!!
!!Spam answers will reported!!​

Answers

Answered by SparklingBoy
329

Given :-

  • The area of a rectangular park is the same as that of a square park.

  • The side of the square park is 60 m.

  • The length of the rectangular park is 120 m.

To Find :-

  • The breadth of the rectangular park.

Formulae Used :-

 Area of Square :

\large \underbrace{\underline{\text{A}_{ \text{(Square)}} = \text{a}^2}}

Where

  • a = Side Length of the Square

❒ Area of Rectangle :

\large\underbrace{\underline{\text A_{\text{(Rectangle)}}\text{ = l × b}}}

Where ,

  • l = Length of Rectangle

  • b = Breadth of Rectangle

Solution :-

We Have,

  • Side of Square = a = 60 m

Hence,

\large\text{A}_{ \text{(Square)}} = \text a^2 \\ \\ = 60 \times 60 \\

\orange{ \large :\longmapsto  \underline {\boxed{{\bf {A}_{{(Square)}} = { 3600\: {m^2} }} }}} \\

Also,

  • Length of Rectangle = l = 120 m

  • Let Breadth of Rectangle = b meter

Hence,

\large\text A_{\text{(Rectangle})}\text{ = (120}  \times  \text {b)} \\

\orange{ \large:\longmapsto \underline {\boxed{{\bf A_{{Rectangle}}{ =120 \:b}} }}}\\

⏩ According To Question :

\large\red{\text{A}_{ \text{(Square)}} = \text A_{\text{(Rectangle)}}}

:\longmapsto 3600 = 120\text b \\

:\longmapsto\text b =   \cancel\frac{3600}{120}  \\

\purple{ \Large :\longmapsto  \underline {\boxed{{\bf b = 30} }}}

Hence,

\large\underline{\pink{ \underline{ \pmb{\frak{Breadth \: of \: Rectangle = 30 \: m }}}}}


MystícPhoeníx: Lajawab ;)
Answered by Anonymous
108

Answer:

Given :-

  • The area of a rectangular park is the same as that of a square park. If the side of the square park is 60 m and the length of the rectangular park is 120 m.

To Find :-

  • What is the breadth of the rectangular park.

Formula Used :-

\clubsuit Area Of Square Formula :

\footnotesize\mapsto \sf\boxed{\bold{\pink{Area_{(Square)} =\: Side \times Side}}}

\clubsuit Area Of Rectangle Formula :

\footnotesize\mapsto \sf\boxed{\bold{\pink{Area_{(Rectangle)} =\: Length \times Breadth}}}

Solution :-

First, we have to find the area of square :

Given :

  • Side = 60 m

According to the question by using the formula we get,

\implies \sf Area_{(Square)} =\: 60 \times 60

\implies \sf\bold{\purple{Area_{(Square)} =\: 3600\: m^2}}

Now, we have to find the area of rectangle :

Let,

\leadsto \bf Breadth_{(Rectangle)} =\: x\: m

Given :

  • Length = 120 m

According to the question by using the formula we get,

\implies \sf Area_{(Rectangle)} =\: 120 \times x

\implies \sf\bold{\purple{Area_{(Rectangle)} =\: 120x\: m}}

Now, we have to find the breadth of the rectangle park :

\small\longrightarrow \bf Area_{(Square\: Park)} =\: Area_{(Rectangular\: Park)}

\longrightarrow \sf 3600 =\: 120x

\longrightarrow \sf \dfrac{360\cancel{0}}{12\cancel{0}} =\: x

\longrightarrow \sf \dfrac{\cancel{360}}{\cancel{12}} =\: x

\longrightarrow \sf 30 =\: x

\longrightarrow \sf\bold{\red{x =\: 30\: m}}

\bigstar\: \bf Breadth_{(Rectangle)} =\: 30\: m

{\small{\bold{\underline{\therefore\: The\: breadth\: of\: the\: rectangular\: park\: is\: 30\: m\: .}}}}

Similar questions