Math, asked by emaparker1909, 4 months ago

The area of a rectangular plot of breadth 50m is 3000 m2 . Find its perimeter.

Answers

Answered by Anonymous
8

Answer :

  • perimeter of rectangular is 220m

Given :

  • Area of rectangular = 3000m
  • Breadth = 50m
  • length = ?

To find:

  • perimeter of rectangular

Solution:

  • Area of rectangular is 3000m

As we know that :

  • Area of rectangle = l × b

➙ Area of rectangle = l x b

➙ 3000 = l × 50

➙ l = 3000/50

➙ l = 60m

Length is 60m

Now we have to find the perimeter:

As we know that:

  • perimeter of rectangle = 2(l + b)

where l is length (60m) and breadth is (50m)

➙ perimeter of rectangular= 2(l + b)

➙ 2 (length + breadth)

➙ 2 (60 + 50)

➙ 2 (110)

➙ 220m

Hence perimeter of rectangular is 220m

More Explanation:

  • Perimeter of rectangle = 2(l + b)
  • Area of rectangle = lb
  • Diagonal of rectangle = l² + b²
Answered by Anonymous
4

Correct Question-:

  • The area of a rectangular plot of breadth 50m is 3000 m² . Find its perimeter.

AnswEr-:

  • \underline{\boxed{\star{\sf{\blue{  Perimeter \:of\:Rectangular \:plot\: =  220 m.}}}}}
  • \underline{\boxed{\star{\sf{\blue{  Breadth \:of\:Rectangular \:plot\: =  60 m.}}}}}

EXPLANATION-:

  •  \frak{Given \:\: -:} \begin{cases} \sf{The\:area\:of\:Rectangular\:plot\:is\:= \frak{3000m²}} & \\\\ \sf{Breadth \:of\:Rectangular \:plot \:=\:\frak{50m}}\end{cases} \\\\
  •  \frak{Given \:\: -:} \begin{cases} \sf{The\:Perimeter \:of\:Rectangular\:plot\:\: } & \\\\ \sf{Length \:of\:Rectangular \:plot \:}\end{cases} \\\\

Now ,

  • \underline{\boxed{\star{\sf{\blue{  Area\:of\:Rectangular\:plot\:=length \times breadth.}}}}}

 \frak{Here \:\: -:} \begin{cases} \sf{The\:area\:of\:Rectangular\:plot\:is\:= \frak{3000m²}} & \\\\ \sf{Breadth \:of\:Rectangular \:plot \:=\:\frak{50m}}\end{cases} \\\\

  • \implies{\sf{\large { 3000m² = 50 × length}}}
  • \implies{\sf{\large { \frac{3000}{50} =  length}}}
  • \implies{\sf{\large { 60m =  length}}}

Now ,

  • \underline{\boxed{\star{\sf{\blue{  Breadth \:of\:Rectangular \:plot\: =  60 m.}}}}} _______[1]

Now ,

  • \underline{\boxed{\star{\sf{\blue{  Perimeter \:of\:Rectangular\:plot\:=2(length + breadth).}}}}}

 \frak{Here \:\: -:} \begin{cases} \sf{The\:Length \:of\:Rectangular\:plot\:is\:= \frak{60m}} & \\\\ \sf{Breadth \:of\:Rectangular \:plot \:=\:\frak{50m}}\end{cases} \\\\

  • \implies{\sf{\large { Perimeter_{Rectangle}= 2(50 + 60) }}}
  • \implies{\sf{\large { Perimeter_{Rectangle}= 2(110) }}}
  • \implies{\sf{\large { Perimeter_{Rectangle}= 220m }}}

Then ,

  • \underline{\boxed{\star{\sf{\blue{  Perimeter \:of\:Rectangular \:plot\: =  220 m.}}}}}

Hence ,

  • \underline{\boxed{\star{\sf{\blue{  Perimeter \:of\:Rectangular \:plot\: =  220 m.}}}}}
  • \underline{\boxed{\star{\sf{\blue{  Breadth \:of\:Rectangular \:plot\: =  60 m.}}}}}

___________________@___________________

Similar questions