Math, asked by nk8241605, 6 months ago

The area of a Rhombus is 119 sqm and its perimeter is 68m.Its altitude will be

1.) 7m

2.) 9m

3.) 11m

4.) 17m

Answers

Answered by Anonymous
29

Required Answer -

7m

Given -

  • Area of rhombus = 119m²

  • Perimeter of rhombus = 68m

To find -

  • It's altitude

Solution -

Since, rhombus has 4 equal sides, therefore it's perimeter is 4a, where a = side.

According to question -

→ 4 × side = 68m

→ Side = 68/4

→ Side = 17m

\therefore Side of rhombus is 17m

Now,

It is given, area of rhombus i.e 119m².

Area of rhombus = Base × Altitude

119 = 17 × Altitude

Altitude = 119/17

Altitude = 7m

\therefore The altitude of the rhombus is 7m

Verification -

i) Perimeter of rhombus = 4 × a

Perimeter of rhombus = 4 × 17

Perimeter of rhombus = 86m

ii) Area of rhombus = Base × Altitude

Area of rhombus = 17 × 7

Area of rhombus = 119m²

LHS = RHS

Hence, proved.

_______________________________________

Answered by VinCus
132

Given:-

\bigstarThe area of rhombus is 119 m

\bigstarThe perimeter of rhombus is 68 m

To Prove:-

\bigstarThe altitude of rhombus

Solution:-

\bigstarLet the side of rhombus be y inches

\bigstarPerimeter of rhombus = 68 m

  \longrightarrow\bold{4 \times side \:  =  \: 68 \: m} \\  \\  \longrightarrow\bold{4 \times y \:  =  \: 68 \: m}  \\  \\  \longrightarrow\bold{y =  \frac{68}{4} } \\  \\  \longrightarrow\bold{y \:  = 17} \:

\bigstarHence, side of rhombus is 17 m.

\bigstarWe know,

\longrightarrow{ \boxed{ \boxed{ \bold{Side \:  of \:  r hombus \:  = Base \:  of  \: rhombus</p><p> }}}} \:

\bigstarRhombus is a parallelogram with 4 equal sides. Hence, we can determine the area of rhombus as that of parallelogram.

\bigstarLet the height of rhombus be x inches

\longrightarrow{ \boxed{ \boxed{ \bold{base \times height \:  = 119 \:  m \: }}}}  \:

 \longrightarrow \bold{17 \times x = 119} \\  \\   \longrightarrow\bold{x =  \frac{119}{17} } \\  \\  \longrightarrow \bold{7 \: m}

Hence, the altitude of the rhombus is 7 m

Similar questions