Math, asked by exictat, 6 months ago

The area of a Rhombus is 119 sqm and its perimeter is 68m.Its altitude will be
1.) 7m
2.) 9m
3.) 11m
4.) 17m​

Answers

Answered by Anonymous
2

Solution:

★ Let the side of rhombus be y inches

★ Perimeter of rhombus = 68 m

</p><p>\begin{gathered}\longrightarrow\bold{4 \times side \: = \: 68 \: m} \\ \\ \longrightarrow\bold{4 \times y \: = \: 68 \: m} \\ \\ \longrightarrow\bold{y = \frac{68}{4} } \\ \\ \longrightarrow\bold{y \: = 17} \:\end{gathered}

★ Hence, side of rhombus is 17 m.

★ We know,

\longrightarrow{ \boxed{ \boxed{ \bold{Side \: of \: r hombus \: = Base \: of \: rhombus }}}}

★ Rhombus is a parallelogram with 4 equal sides. Hence, we can determine the area of rhombus as that of parallelogram.

★ Let the height of rhombus be x inches

\longrightarrow{ \boxed{ \boxed{ \bold{base \times height \: = 119 \: m \: }}}}

\begin{gathered}\longrightarrow \bold{17 \times x = 119} \\ \\ \longrightarrow\bold{x = \frac{119}{17} } \\ \\ \longrightarrow \bold{7 \: m}\end{gathered}

Hence, the altitude of the rhombus is 7m.

Answered by shubhamkh9560
1

Step-by-step explanation:

ANSWER

Given Area of rhombus = 119cm

Perimeetr = 56 cm

Perimeter = 4 length of side [ because all sides of rhombus are equal]

⇒ Length of side =

4

56

=14 cm

∴ Area = base × altitude

Any side can be considered as base

Altitude = Area / base

=119/14

= 8.5 cm

∴ Length of diagonals = 8.5 cm

Attachments:
Similar questions